A=\(\dfrac{3^2}{10.16}+\dfrac{3^2}{16.22}+\dfrac{3^2}{22.28}+...+\dfrac{3^2}{100.106}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+\dfrac{6}{16.22}\)
\(1A=1-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{11}+\dfrac{1}{11}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}\right)-\dfrac{1}{22}\)\(1A=1-\dfrac{1}{22}\)
\(1A=\dfrac{22}{22}-\dfrac{1}{22}\)
\(1A=\dfrac{21}{22}\)
\(\dfrac{21}{22}\) không thể rút gọn
\(A=\dfrac{1}{1\cdot2}+\dfrac{2}{2\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{5}{11\cdot16}+\dfrac{6}{16\cdot22}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}\\ =1-\dfrac{1}{22}\\ =\dfrac{21}{22}\)
Vậy \(A=\dfrac{21}{22}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}+\dfrac{1}{22}-\dfrac{1}{29}\)
=1-1/29
=28/29
a) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)
\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.....\dfrac{779}{780}\)\(=\)
a)\(\dfrac{a}{b}=5-\dfrac{3}{5}=\dfrac{25}{5}-\dfrac{3}{5}=\dfrac{22}{5}\)
b)\(\dfrac{a}{b}=\dfrac{5}{6}+\dfrac{4}{7}=\dfrac{35}{42}+\dfrac{24}{42}=\dfrac{59}{42}\)
c)\(\dfrac{a}{b}=\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{3}{5}\times\dfrac{3}{2}=\dfrac{9}{10}\)
2:
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
a) Ta có:
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{9}\ge\dfrac{\left(ab+bc+ca\right)}{3}\)
\(\Leftrightarrow\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ca}{3}}\)
Đẳng thức xảy ra khi $a=b=c.$
b) BĐT \(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
Hay là \(2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\),
đúng.
Đẳng thức xảy ra khi $a=b=c.$
c) \(\Leftrightarrow\dfrac{\left(x^2+2\right)^2}{x^2+1}\ge4\Leftrightarrow x^4+4x^2+4\ge4x^2+4\Leftrightarrow x^4\ge0\)
Đẳng thức xảy ra khi $x=0.$
d) Xét hiệu hai vế đi bạn.
b, B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+.....+ \(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)
2 \(\times\) B = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) - \(\dfrac{1}{2^3}\) + \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)
2 \(\times\) B + B = 1 - \(\dfrac{1}{2^{100}}\)
3B = ( 1 - \(\dfrac{1}{2^{100}}\))
B = ( 1 - \(\dfrac{1}{2^{100}}\)) : 3
A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)+ \(\dfrac{1}{3^3}\)+......+ \(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)
A\(\times\) 3 = 3 + 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^2}\)+....+ \(\dfrac{1}{3^{n-1}}\)
A \(\times\) 3 - A = 3 - \(\dfrac{1}{3^n}\)
2A = 3 - \(\dfrac{1}{3^n}\)
A = ( 3 - \(\dfrac{1}{3^n}\)) : 2
a) \(...=\dfrac{19}{8}:\dfrac{15}{4}x\dfrac{8}{3}=\dfrac{19}{8}x\dfrac{4}{15}x\dfrac{8}{3}=\dfrac{76}{45}\)
b) \(...=\dfrac{3}{2}:\dfrac{7}{3}:\dfrac{17}{6}=\dfrac{3}{2}x\dfrac{3}{7}x\dfrac{6}{17}=\dfrac{27}{119}\)
c) \(...=\dfrac{14}{3}-\dfrac{7}{4}:\dfrac{12}{5}=\dfrac{14}{3}-\dfrac{7}{4}x\dfrac{5}{12}=\dfrac{14}{3}-\dfrac{35}{48}=\dfrac{14x16}{48}-\dfrac{35}{48}=\dfrac{224}{48}-\dfrac{35}{48}=\dfrac{189}{48}=\dfrac{63}{16}\)
\(a,2\dfrac{3}{8}:3\dfrac{3}{4}\times2\dfrac{2}{3}\\ =\dfrac{2\times8+3}{8}:\dfrac{3\times4+3}{4}\times\dfrac{2\times3+2}{3}\\ =\dfrac{19}{8}:\dfrac{15}{4}\times\dfrac{8}{3}\\ =\dfrac{19\times4\times8}{8\times15\times3}=\dfrac{76}{45}\)
\(b,1\dfrac{1}{2}:\dfrac{7}{3}:2\dfrac{5}{6}\\ =\dfrac{3}{2}:\dfrac{7}{3}:\dfrac{2\times6+5}{6}\\ =\dfrac{3}{2}\times\dfrac{3}{7}\times\dfrac{6}{17}\\ =\dfrac{54}{238}=\dfrac{27}{119}\)
\(c,4\dfrac{2}{3}-1\dfrac{3}{4}:2\dfrac{2}{5}\\ =\dfrac{4\times3+2}{3}-\dfrac{1\times4+3}{4}:\dfrac{2\times5+2}{5}\\ =\dfrac{14}{3}-\dfrac{7}{4}:\dfrac{12}{5}\\ =\dfrac{14}{3}-\dfrac{7}{4}.\dfrac{5}{12}\\ =\dfrac{14}{3}-\dfrac{35}{48}\\ =\dfrac{14\times16-35}{48}=\dfrac{189}{48}=\dfrac{63}{16}\)
\(A=12\dfrac{2}{5}.\left(\dfrac{-7}{3}\right)-3\dfrac{2}{5}.\left(\dfrac{-7}{3}\right)\)
\(A=\dfrac{62}{5}.\left(\dfrac{-7}{3}\right)-\dfrac{17}{5}.\left(\dfrac{-7}{3}\right)\)
\(A=\left(\dfrac{-7}{3}\right).\left(\dfrac{62}{5}-\dfrac{17}{5}\right)\)
\(A=\left(\dfrac{-7}{3}\right).\dfrac{45}{5}\)
\(A=-21\)
\(B=\left(\dfrac{2}{3}\right)^3:\left(\dfrac{2}{3}\right)^2+\left(-1\dfrac{1}{2}\right):150\%\)
\(B=\left(\dfrac{2}{3}\right)^1-\dfrac{3}{2}:1,5\)
\(B=\dfrac{2}{3}-\dfrac{3}{2}:\dfrac{3}{2}\)
\(B=\dfrac{2}{3}-1\)
\(B=-\dfrac{1}{3}\)
A = \(12\dfrac{2}{5}\) . (\(\dfrac{-7}{3}\)) - \(3\dfrac{2}{5}\) . (\(\dfrac{-7}{3}\))
A = (\(\dfrac{-7}{3}\)) . ( \(12\dfrac{2}{5}\) - \(3\dfrac{2}{5}\) )
A = (\(\dfrac{-7}{3}\)) . ( \(\dfrac{62}{5}\) - \(\dfrac{17}{5}\) )
A = (\(\dfrac{-7}{3}\)) . 9
A = \(\dfrac{-7.9}{3}\)
A = \(\dfrac{-63}{3}\) = -21
\(=3^2\cdot\dfrac{1}{6}\left(\dfrac{6}{10\cdot16}+\dfrac{6}{16\cdot22}+...+\dfrac{6}{100\cdot106}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{1}{10}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}+...+\dfrac{1}{100}-\dfrac{1}{106}\right)\)
\(=\dfrac{3}{2}\cdot\left(\dfrac{1}{10}-\dfrac{1}{106}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{24}{265}=\dfrac{36}{265}\)
thank