tìm x để Q= 1/3,5-|x+5| co gia tri duong nho nhat
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A đạt GTNN
=> \(\frac{1}{3,5-\left|x+5\right|}\)đạt GTNN
=> 3,5 - |x + 5| đạt GTLN (ĐK 3,5 - |x + 5| \(\ne\)0)
mà \(\left|x+5\right|\ge0\forall x\Rightarrow3,5-\left|x+5\right|\le3,5\)
Dấu "=" xảy ra <=> x + 5 = 0 => x = -5
=> 3,5 - |x + 5| đạt GTLN là 3,5 <=> x = -5
Thay x vào A
=> GTNN của A LÀ 1/3,5 <=> x = -5
Để A có giá trị dương
Thì 5n - 7 chia hết cho 9
Nên : 5n - 7 thuôc BC của 9
=> BC(9) = {0;9;18;27;......}
=> 5n - 7 = {0;9;18;27;......}
=> 5n = {7;16;25;32;........}
=> mà n là số tự nhiên nhỏ nhất và A đạt giá trị dương nhỏ nhất
Nên => 5n = 25
=> n = 5
D = (x-1)2 - 5 nhỏ nhất
=> (x-1)2 nhỏ nhất
Mà (x-1)2 \(\ge\) 0 => (x-1)2 = 0
x - 1 = 0 => x = 1
D = 0 - 5 = -5
Vậy Dmax = -5 tại x = 1
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
Ta thấy:\(\left|x+5\right|\ge0\)
\(\Rightarrow\frac{1}{3,5}+\left|x+5\right|\ge0+\frac{1}{3,5}=\frac{2}{7}\)
\(\Rightarrow Q\ge\frac{2}{7}\)
Dấu "=" <=>x+5=0 =>x=-5
Vậy Qmin=2/7 <=>x=-5