Cho 2 đoạn thẳng AC và BD cắt nhau tại S sao cho SB=SD.Gọi M là trung điểm của AB và N là trung điểm của CD.đoạn MN cắt AC tại O .CMR: OM=ON
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo https://h.vn/hoi-dap/question/147625.html nha
a) Xét \(\Delta AOC\) và \(\Delta BOD\) có :
AO = OB ( gt )
\(\widehat{O_1}=\widehat{O_2}\) ( đối đỉnh )
OC = OD ( gt )
=> \(\Delta AOC\) = \(\Delta BOD\) ( c.g.c)
=> AC = BD ( 2 cạnh tương ứng )
b)
=> \(\widehat{C_1}=\widehat{D_1}\) ( hai góc tương ứng )
=> AC // BD
c)
Kẻ MO cắt BD tại N'
Ta c/m được \(\Delta MOC=\Delta N'OD\left(g.c.g\right)\)(1)
=> N'D = MC
=> N'B = MA
=> N' trùng M
Mặt khác (1) => MO = ON
=> O là tung điểm của MN
Ta có hình vẽ
a/ Xét tam giác AOC và tam giác BOD có
-góc AOC = góc BOD (đối đỉnh)
-AO=OB (vì O là trung điểm của AB)
-CO=OD (Vì O là trung điểm của CD)
Vậy tam giác AOC = tam giác BOD
=> AC = BD (2 cạnh tương ứng)
b/ Xét tam giác AOD và tam giác BOC có
-góc AOD = góc BOC (đối đỉnh)
-AO=OB (vì O là trung điểm của AB)
-CO=OD (Vì O là trung điểm của CD)
Vậy tam giác AOD = tam giác BOC
=> góc DAB = góc ABC
Mà DAB; ABC : so le trong
=> AD//BC
c/ Vì tam giác AOC = tam giác BOD
=> góc OAC = góc OBD (2 góc tương ứng)
Xét tam giác AOM và BON có:
-góc OAC = góc OBD
-AM = BN (GT)
-AO=OB (O là trung điểm của AB)
Vậy tam giác AOM = tam giác BON
=> MO = ON (2 cạnh tương ứng)
Vậy O là trung điểm của MN (đpcm)