K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: A=y(x-4)-5(x-4)

=(x-4)(y-5)

Khi x=14 và y=5,5 thì A=(14-4)(5,5-5)=0,5*10=5

b: \(B=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)

Khi x=5,2 và y=4,8 thì B=(5,2+4,8)(5,2-5)

=0,2*10=2

d: Khi x=5,75 và y=4,25 thì

D=5,75^3-5,75^2*4,25+4,25^3

=8087/64

30 tháng 7 2023

bn làm ơn giải chi tiết đi vs ạ

a: A=yx-4y-5x+20

=y(x-4)-5(x-4)

=(x-4)(y-5)

Khi x=14 và y=5,5 thì A=(14-4)(5,5-5)=0,5*10=5

b: \(B=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)

Khi x=5,2 và y=4,8 thì B=(5,2+4,8)(5,2-5)

=0,2*10=2

d: Khi x=5,75 và y=4,25 thì

D=5,75^3-5,75^2*4,25+4,25^3

=8087/64

c: \(D=xyz-xy-yz-xz+x+y+z-1\)

=xy(z-1)-yz+y-xz+z+x-1

=xy(z-1)-y(z-1)-z(x-1)+(x-1)

=(z-1)(xy-y)-(x-1)(z-1)

=(z-1)(xy-y-1)

=(11-1)(9*10-10-1)

=10*79=790

16 tháng 10 2023

Ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

\(\Rightarrow\dfrac{1}{z}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\left(\dfrac{1}{z}\right)^3=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3\)

\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x^3}+3\cdot\dfrac{1}{x^2}\cdot\dfrac{1}{y}+3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y^2}+\dfrac{1}{y^3}\right)\)

\(\Rightarrow\dfrac{1}{z^3}=-\dfrac{1}{x^3}-\dfrac{3}{x^2y}-\dfrac{3}{xy^2}-\dfrac{1}{y^3}\)

\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=-3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y}\cdot\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=-3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y}\cdot-\dfrac{1}{z}\)

\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=3\cdot\dfrac{1}{xyz}\)

\(\Rightarrow xyz\cdot\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)

\(\Rightarrow\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=3\)

\(\Rightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

Vậy \(A=3\)

3 tháng 2 2018

22 tháng 3 2018

a) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:

2xy(5x2y + 3x – z) = 2.1(–1).[5.12.(–1) + 3.1 – (–2)]

= -2[–5 + 3 +2] = –2.0 = 0

Vậy đa thức có giá trị bằng 0 tại x = 1 ; y = –1 và z = –2.

b) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:

xy2 + y2z3 + z3x4 = 1.(–1)2 + (–1)2(–2)3 + (–2)3.14

= 1 + (–8) + (–8) = –15

Vậy đa thức có giá trị bằng -15 tại x = 1 ; y = –1 và z = –2.

22 tháng 3 2018

a) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:

2xy(5x2y + 3x – z) = 2.1(–1).[5.12.(–1) + 3.1 – (–2)]

= -2[–5 + 3 +2] = –2.0 = 0

Vậy đa thức có giá trị bằng 0 tại x = 1 ; y = –1 và z = –2.

b) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:

xy2 + y2z3 + z3x4 = 1.(–1)2 + (–1)2(–2)3 + (–2)314

= 1 + (–8) + (–8) = –15

Vậy đa thức có giá trị bằng -15 tại x = 1 ; y = –1 và z = –2.

9 tháng 9 2021

Đề thiếu kìa :vv

 

9 tháng 9 2021

1/x+1/y+1/z=0⇔xy+yz+zx=0

⇒yz=−xy−zx⇒yz/x^2+2yz=yz/x^2+yz−xy−zx

=yz/(x−y)(x−z)

Tương tự: xz/y^2+2xz=xz/(y−x)(y−z)

xy/z^2+2xy=xy/(x−z)(y−z)

⇒A=−yz(y−z)−zx(z−x)−xy(x−y)/(x−y)(y−z)(z−x)=1

NV
12 tháng 3 2021

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

\(\Rightarrow yz=-xy-zx\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-zx}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\) ; \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)

\(\Rightarrow A=\dfrac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)