\(\left(2\times x-15\right)^5=\left(2\times x-15\right)^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Leftrightarrow\left(2x-15\right)^3\cdot\left(\left(2x-15\right)^2-1\right)=0\)
- \(2x-15=0\Rightarrow x=\frac{15}{2}\)
- \(\left(2x-15\right)^2=1\Rightarrow\orbr{\begin{cases}2x-15=1\\2x-15=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=8\\x=7\end{cases}}}\)
Vậy, PT có 3 nghiệm x = 7; 15/2; 8.
Ta thấy : \(x^3+5\) < \(x^3+10\) < \(x^3+15\) < \(x^3+30\)
Nếu có 1 thừa số âm : \(x^3+5<0\) < \(x^3+10\) nên \(x^3=-8\Rightarrow x=-2\)
Nếu có 3 thừa số âm : \(x^3+15<0\) < \(x^3+30\) nên \(x^3=-27\Rightarrow x=-3\)
Vậy \(x\in\left(-3;-2\right)\)
Để (x3 + 5) . (x3 + 10) . (x3 + 15) x (x3 + 30) < 0
Mà x3 + 5 < x3 + 10 < x3 + 15 < x3 + 30 nên
<=> x3 + 5 < 0 => x3 < -5 => x \(\le\) -2
hoặc x3 + 5 < 0 và x3 + 10 < 0 và x3 + 15 < 0
=> x3 + 15 < 0 => x3 < -15 => x \(\le-3\)
Vậy \(x\le2\) với \(x\in Z\)
\(1\frac{13}{15}\cdot3\cdot(0,5)^2\cdot3+\left[\frac{8}{15}-1\frac{19}{60}:1\frac{23}{24}\right]\)
\(=\frac{28}{15}\cdot3\cdot0,5\cdot0,5\cdot3+\left[\frac{8}{15}-\frac{79}{60}:\frac{47}{24}\right]\)
\(=\frac{28}{5}\cdot0,25\cdot3+\left[\frac{32}{60}-\frac{79}{60}\cdot\frac{24}{47}\right]\)
\(=\frac{28}{5}\cdot\frac{25}{100}\cdot3+\left[\frac{32}{60}-\frac{158}{235}\right]\)
\(=\frac{28}{5}\cdot\frac{1}{4}\cdot3+\frac{-98}{705}=\frac{7}{5}\cdot1\cdot3+\frac{-98}{705}\)
Đến đây là tính dễ rồi :v
\((-3,2)\cdot\frac{-15}{64}+\left[0,8-2\frac{4}{15}\right]:1\frac{23}{24}\)
\(=\frac{-32}{10}\cdot\frac{-15}{64}+\left[\frac{8}{10}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-32\cdot(-15)}{10\cdot64}+\left[\frac{4}{5}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-1\cdot(-3)}{2\cdot2}+\frac{4\cdot3-34}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-22}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-517}{180}=\frac{-191}{90}\)
Bài 2 : \(\frac{2\cdot(-13)\cdot9\cdot10}{(-3)\cdot4\cdot(-5)\cdot26}=\frac{1\cdot(-1)\cdot3\cdot2}{(-1)\cdot2\cdot(-1)\cdot2}=\frac{1\cdot3}{-1\cdot2}=\frac{3}{-2}=\frac{-3}{2}\)
\(\frac{15\cdot8+15\cdot4}{12\cdot3}=\frac{15\cdot(8+4)}{12\cdot3}=\frac{15\cdot12}{12\cdot3}=\frac{15}{3}=5\)
\(2\frac{2}{3}:\left\{\left[\left(3,72-0,02.x\right)\frac{10}{37}\right]:\frac{5}{6}+2,8\right\}-\frac{7}{15}=0,2\)
\(2\frac{2}{3}:\left\{\left[\left(3,75-0,02.x\right)\frac{10}{37}\right]:\frac{5}{6}+2,8\right\}=\frac{2}{3}\)
\(\left\{\left[\left(3,72-0,02.x\right)\frac{10}{37}\right]:\frac{5}{6}+2,8\right\}=4\)
\(\left[\left(3,72-0,02.x\right)\frac{10}{37}\right]:\frac{5}{6}=\frac{6}{5}\)
\(\left[\left(3,72-0,02.x\right)\frac{10}{37}\right]=1\)
\(\left(3,72-0,02.x\right)=\frac{37}{10}\)
\(0,02.x=0,02\)
\(x=1\)
\(2\frac{2}{3}:\left\{\left[\left(3,72-0,02.x\right)\frac{10}{37}\right]:\frac{5}{6}+2,8\right\}-\frac{7}{15}=0,2\)
\(\Rightarrow\frac{8}{3}:\left\{\left[\left(\frac{93}{25}-\frac{1}{50}.x\right)\frac{10}{37}\right]:\frac{5}{6}+\frac{14}{5}\right\}-\frac{7}{15}=\frac{1}{5}\)
\(\Rightarrow\left\{\left[\frac{93}{25}-\frac{1}{50}.x\right]:\frac{5}{6}+\frac{14}{5}\right\}-\frac{7}{15}=\frac{8}{3}:\frac{1}{5}=\frac{40}{3}\)
\(\Rightarrow\left[\frac{93}{25}-\frac{1}{50}.x\right]:\frac{5}{6}+\frac{14}{5}=\frac{40}{3}+\frac{7}{15}=\frac{69}{5}\)
\(\Rightarrow\left[\frac{93}{25}-\frac{1}{50}.x\right]:\frac{5}{6}=\frac{69}{5}-\frac{14}{5}=11\)
\(\Rightarrow\frac{93}{25}-\frac{1}{50}.x=11.\frac{5}{6}=\frac{55}{6}\)
\(\Rightarrow\frac{1}{50}.x=\frac{93}{25}-\frac{55}{6}=\frac{-817}{150}\)
\(\Rightarrow x=\frac{-817}{150}:\frac{1}{50}=\frac{-817}{3}\)
Ủng hộ tớ nha m.n?
\(\left(x^2.y\right)^5.\left(x^2.y^2\right)^7.\left(x.y^2\right)^6.x^3\)
\(=x^{10}.y^5.x^{14}.y^{14}.x^6.y^{12}.x^3\)
\(=x^{33}.y^{31}\)