Cho S = 1/201 + 1/202 + 1/203 + ... + 1/299 + 1/300. Chứng minh rằng 1/3 < S < 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chia A ra lam 2 khoang la tu B=1/201+1/202+...+1/250 (50 so hang)va tu C=1/251+1/252+...+1/300 (50 so hang)
ta thay 1/201=1/201, 1/202<1/201,....1/250<1/201
cong ca 2 ve cua 50 bat dang thuc cung chieu ta duoc B<50.1/201=> B<50/201
ta cung thay 1/251=1/251,1/252<1/251,....1/300<1/251
cong 2 ve cua 50 bat dang thuc cung chieu ta lai duoc C<50.1/251=> C<50/251
Ta thay A= B+C
suy ra A< 50/201+50/251=> A<0,448
ma tha thay 0,448<9/20
SUY RA A<9/20 (dpcm)
Thoi mik ko lay tien cua ban dau
Co gang len! Chuc ban hoc tot!
Ta có: A=1/201+1/202+1/203+...+1/300
=(1/201+1/202+...+1/250)+(1/251+1/252+...+1/300)
Ta có
1/201+1/202+...+1/250<1/200+1/200+...+1/200=50.1/200=50/200=1/4 (1)
1/251+1/252+...+1/300<1/250+1/250+...+1/250=50.1/250=50/250=1/5 (2)
từ (1) và (2)=> A<1/4+1/5=>A<9/20
Vậy A<9/20
~~~CHÚC BẠN HỌC GIỎI~~~
=>A=
Ta có: A=1/201+1/202+1/203+...+1/300
=(1/201+1/202+...+1/250)+(1/251+1/252+...+1/300)
Ta có
1/201+1/202+...+1/250<1/200+1/200+...+1/200=50.1/200=50/200=1/4 (1)
1/251+1/252+...+1/300<1/250+1/250+...+1/250=50.1/250=50/250=1/5 (2)
từ (1) và (2)=> A<1/4+1/5=>A<9/20
Vậy A<9/20
\(M=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{299}+\frac{1}{300}\)
\(\Rightarrow\)Có 100 phân số
Ta có: \(\frac{1}{201}>\frac{1}{300}\)
\(\frac{1}{202}>\frac{1}{300}\)
...................
\(\frac{1}{299}>\frac{1}{300}\)
\(\frac{1}{300}=\frac{1}{300}\)
\(\Rightarrow M>\left(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\right)=\frac{100}{300}=\frac{1}{3}\)
Vậy....