4x=3y và x+y=21
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x=3y\Rightarrow x=\dfrac{3}{4}y\)
\(x+y=21\Rightarrow\dfrac{3}{4}y+y=21\Rightarrow\dfrac{7}{4}y=21\Rightarrow y=12\)
\(\Rightarrow x=9\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{x}{6}=\dfrac{y}{9}\left(1\right)\)
Ta có: \(\dfrac{x}{3}=\dfrac{z}{5}\)
nên \(\dfrac{x}{6}=\dfrac{z}{10}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}\)
Đặt \(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6k\\y=9k\\z=10k\end{matrix}\right.\)
Ta có: \(x^2+y^2+z^2=21\)
\(\Leftrightarrow k^2=\dfrac{21}{217}\)
Trường hợp 1: \(k=\dfrac{\sqrt{93}}{31}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6k=\dfrac{6\sqrt{93}}{31}\\y=9k=\dfrac{9\sqrt{93}}{31}\\z=10k=\dfrac{10\sqrt{93}}{31}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{\sqrt{93}}{31}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6k=\dfrac{-6\sqrt{93}}{31}\\y=9k=\dfrac{-9\sqrt{93}}{31}\\z=10k=\dfrac{-10\sqrt{93}}{31}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}=\dfrac{x^2+y^2+z^2}{217}=\dfrac{21}{217}=\dfrac{3}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{31}\cdot6=\dfrac{18}{31}\\y=\dfrac{3}{31}\cdot9=\dfrac{27}{31}\\z=\dfrac{3}{31}\cdot10=\dfrac{30}{31}\end{matrix}\right.\)
1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)
2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)
3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)
Áp dụng t/c dtsbn:
\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)
a ) 2x = 3y - 2x và x + y = 14
2x = 3y - 2x
2x + 2x = 3y
4x = 3y
=> x/3 = y/4
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
x/3 = y/4 = x+y/3+4 = 14/7 = 2
x = 3 .2 = 6
y = 4 . 2 = 8
b ) 6x - 2y = 3y - 4x
6x + 4x = 3y + 2y
10x = 5y
=> 2x = y
=> x/1 = y/2
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x/1 = y/2 = x+y/1+2 = -99/3 = -33
x = 1 . -33 = -33
y = 2 . -33 = -66
a) Ta có: 2x = 3y - 2x => 3y = 2x + 2x => 3y = 4x => \(\frac{y}{4}=\frac{x}{3}\)
Áp dụng t/c dãy tỉ số = nhau:
\(\frac{y}{4}=\frac{x}{3}=\frac{y+x}{4+3}=\frac{14}{7}=2\)
\(\hept{\begin{cases}x=2\cdot3=6\\y=2\cdot4=8\end{cases}}\)
Vậy . . . . . . . . . . . . . . . . . . . .
b) Ta có: 6x - 2y = 3y - 4x => 6x - 4x = 3y + 2y => 2x = 5y
Sau đó làm như trên nhé
Ta có : \(\frac{x}{5}=y=\frac{z}{-2}\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{z}{-2}\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{2z}{-4}\)
Lại có : -x - y + 2z = 160
=> -(x + y - 2z) = 160
=> x + y - 2z = -160
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{1}=\frac{2z}{-4}=\frac{x+y-2z}{5+1-\left(-4\right)}=\frac{-160}{10}=-16\)
=> x = -16.5 = -80 , y = -16 , z = -16.(-2) = 32
Đặt \(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=3k\\y=8k\\z=5k\end{cases}}\)
=> 4x = 12k , 3y = 24k , 2z = 10k
=> 4x + 3y - 2z = 12k + 24k - 10k
=> 52 = 26k
=> k = 2
Với k = 2 thì x = 3.2 = 6 , y = 8.2 = 16 , z= 5.2 = 10
8x = 5y => \(\frac{x}{5}=\frac{y}{8}\)
=> \(\frac{2x}{10}=\frac{y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{y}{8}=\frac{y-2x}{8-10}=\frac{-10}{-2}=5\)
=> x = 5.5 = 25,y = 5.8 = 40
6xy+4x-3y=8
=> 6xy -3y=8-4x
=>3y(2x-1)= -2(2x-1) +6
=>(2x-1)(3y+2)=6
mà x,y thuộc Z =>(2x-1),(3y+2) thuộc Z =>(2x-1),(3y+2) thuộc U(6) xong giải ra bình thường nhé mấy câu sau tương tự
\(\dfrac{x}{3}=\dfrac{y}{4}\)Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{21}{7}=3\Rightarrow x=9;y=12\)