K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC

Do đó: \(\widehat{ADC}=\widehat{MAC}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

hay \(\widehat{MDA}=\widehat{MAC}\)

Xét ΔMDA và ΔMAC có 

\(\widehat{MDA}=\widehat{MAC}\)(cmt)

\(\widehat{AMD}\) chung

Do đó: ΔMDA∼ΔMAC(g-g)

Suy ra: \(\dfrac{MD}{MA}=\dfrac{AD}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(MA\cdot AD=MD\cdot AC\)(đpcm)

a) Xét tứ giác MAOB có 

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét (O) có 

MA là tiếp tuyến có A là tiếp điểm(gt)

MB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: MA=MB(Tính chất hai tiếp tuyến cắt nhau)

Ta có: OA=OB(=R)

nên O nằm trên đường trung trực của BA(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MA=MB(cmt)

nên M nằm trên đường trung trực của BA(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB
⇔OM⊥AB(đpcm)

7 tháng 8 2017

Giải bài 34 trang 80 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 34 trang 80 SGK Toán 9 Tập 2 | Giải toán lớp 9

( góc tạo bởi tia tiếp tuyến và dây cung, góc nội tiếp cùng chắn cung AT)

Giải bài 34 trang 80 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau.

11 tháng 4 2017

Xét hai tam giác BMT và TMA, chúng có:

chung

= (cùng chắn cung nhỏ )

nên ∆BMT ~ ∆TMA, suy ra =

hay MT2 = MA. MB

16 tháng 2 2022

undefined

14 tháng 1 2019

Giải bài 41 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 41 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Số đo của góc có đỉnh nằm bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.

+ Số đo của góc có đỉnh nằm bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.

19 tháng 5 2019

⇒ A ^ + B S M ^

= 1 2 . s đ   N C ⏜ - s đ   B M ⏜ + 1 2 s đ   N C ⏜ + s đ   M B ⏜ = s đ   N C   ⏜ 1

(đpcm)

1 tháng 3 2022

a, Ta có SA = SB (tc tiếp tuyến cắt nhau ) 

OA = OB = R

Vậy OS là đường trung trực đoạn AB 

=> SO vuông AB tại H

b, Vì I là trung điểm 

=> OI vuông NS 

Xét tứ giác IHSE ta có ^EHS = ^EIS = 900

mà 2 góc này kề, cùng nhìn cạnh ES

Vậy tứ giác IHSE nt 1 đường tròn 

=> ^ESH = ^HIO ( góc ngoài đỉnh I ) 

Xét tam giác OIH và tam giác OSE có 

^HIO = ^OSE (cmt) 

^O_ chung 

Vậy tam giác OIH ~ tam giác OSE (g.g) 

\(\dfrac{OI}{OS}=\dfrac{OH}{OE}\Rightarrow OI.OE=OH.OS\)

Xét tam giác OAS vuông tại A ( do SA là tiếp tuyến với A là tiếp điểm), đường cao AH ta có 

\(OA^2=OH.OS\)(hệ thức lượng) 

\(\Rightarrow OA^2=R^2=OI.OE\)