Cho hàm số \(y=f\left(x\right)=3x^2+1\). Tính : \(f\left(\frac{1}{2}\right)\) ; \(f\left(1\right)\) ; \(f\left(3\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(f\left(\frac{1}{2}\right)=3.\left(\frac{1}{2}\right)^2+1=3.\frac{1}{4}+1=\frac{3}{4}+1=\frac{7}{4}\)
- \(f\left(1\right)=3.1^2+1=3.1+1=3+1=4\)
- \(f\left(3\right)=3.3^2+1=3^3+1=27+1=28\)
Ta có : \(y=f\left(x\right)=2x^2-3x+1\)
\(f\left(-1\right)=2\left(-1\right)^2-3.\left(-1\right)+1=2.1-\left(-3\right)+1=2+3+1=6\)
\(f\left(2\right)=2.2^2-3.2+1=2.4-6+1=8-6+1=3\)
\(f\left(\frac{-1}{2}\right)=2\left(\frac{1}{2}\right)^2-3.\frac{1}{2}+1=2.\frac{1}{4}-\frac{3}{2}+1=\frac{1}{2}-\frac{3}{2}+\frac{2}{2}=0\)
Cho hàm số y=f(x)= −3x.
Ta có f(\(\dfrac{-3}{2}\)) = -3. (\(\dfrac{-3}{2}\))
= \(\dfrac{-3.\left(-3\right)}{2}\)
=\(\dfrac{9}{2}\)
Ta có f(-1) = -3. (-1)
= 3
Vậy f(\(\dfrac{-3}{2}\)) = \(\dfrac{9}{2}\) và f(-1) = 3.
\(\text{1)}\)
\(\text{Thay }x=-2,\text{ ta có: }f\left(-2\right)-5f\left(-2\right)=\left(-2\right)^2\Rightarrow f\left(-2\right)=-1\)
\(\Rightarrow f\left(x\right)=x^2+5f\left(-2\right)=x^2-5\)
\(f\left(3\right)=3^2-5\)
\(\text{2)}\)
\(\text{Thay }x=1,\text{ ta có: }f\left(1\right)+f\left(1\right)+f\left(1\right)=6\Rightarrow f\left(1\right)=2\)
\(\text{Thay }x=-1,\text{ ta có: }f\left(-1\right)+f\left(-1\right)+2=6\Rightarrow f\left(-1\right)=2\)
\(\text{3)}\)
\(\text{Thay }x=2,\text{ ta có: }f\left(2\right)+3f\left(\frac{1}{2}\right)=2^2\text{ (1)}\)
\(\text{Thay }x=\frac{1}{2},\text{ ta có: }f\left(\frac{1}{2}\right)+3f\left(2\right)=\left(\frac{1}{2}\right)^2\text{ (2)}\)
\(\text{(1) - 3}\times\text{(2) }\Rightarrow f\left(2\right)+3f\left(\frac{1}{2}\right)-3f\left(\frac{1}{2}\right)-9f\left(2\right)=4-\frac{1}{4}\)
\(\Rightarrow-8f\left(2\right)=\frac{15}{4}\Rightarrow f\left(2\right)=-\frac{15}{32}\)
a) \(f\left( 1 \right) = 3.1 = 3;f\left( { - 2} \right) = 3.\left( { - 2} \right) = - 6;f\left( {\dfrac{1}{3}} \right) = 3.\dfrac{1}{3} = 1\).
b) Ta có: \(f\left( { - 3} \right) = 3.\left( { - 3} \right) = - 9;f\left( { - 1} \right) = 3.\left( { - 1} \right) = - 3\)
\(f\left( 0 \right) = 3.0 = 0;f\left( 2 \right) = 3.2 = 6;f\left( 3 \right) = 3.3 = 9\);
Ta lập được bảng sau
\(x\) | –3 | –2 | –1 | 0 | 1 | 2 | 3 |
\(y\) | –9 | -6 | –3 | 0 | 3 | 6 | 9 |
\(f\left( { - 3} \right) = - {\left( { - 3} \right)^2} + 1 = - 9 + 1 = - 8\);
\(f\left( { - 2} \right) = - {\left( { - 2} \right)^2} + 1 = - 4 + 1 = - 3\);
\(f\left( { - 1} \right) = - {\left( { - 1} \right)^2} + 1 = - 1 + 1 = 0\);
\(f\left( 0 \right) = - {0^2} + 1 = 0 + 1 = 1\);
\(f\left( 1 \right) = - {1^2} + 1 = - 1 + 1 = 0\);
\(f\left( { - 3} \right) = {\left( { - 3} \right)^2} + 4 = 9 + 4 = 13\);
\(f\left( { - 2} \right) = {\left( { - 2} \right)^2} + 4 = 4 + 4 = 8\);
\(f\left( { - 1} \right) = {\left( { - 1} \right)^2} + 4 = 1 + 4 = 5\);
\(f\left( 0 \right) = {0^2} + 4 = 0 + 4 = 4\);
\(f\left( 1 \right) = {1^2} + 4 = 1 + 4 = 5\).