Tìm tất cả các số nguyên n để: 3n cộng 1 chia hết cho 11-2n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già
a, Do 15 chia hết cho 2n - 1 suy ra 2n -1 thuộc Ư(15)
Ta có Ư(15) = -1 , 1 , 3, -3 , 5 , -5, 15 , -15
nên ta có bảng giá trị sau
2n -1/ -1/ 1/ 3/ -3/ 5/ -5/ 15 /-15
n / 0 /1/2/-1/3/-2/8/-7
Vậy n = 0,1,2,-1,3,-2,8,-7
a)
a b ¯ + b a ¯ = 10 a + b + 10 b + a = 11 a + 11 b = 11 ( a + b ) ⋮ 11
b) n = 0 ta có: 3n + 6 = 30 + 6 = 7 là số nguyên tố
n ≠ 0 ta có 3n ⋮ 3 ; 6 ⋮ 3 nên 3n + 6 ⋮ 3 ; 3n + 6 > 3
Số 3n + 6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3.
Vậy với n = 0 thì 3n + 6 là số nguyên tố.
a, -4(2n+3)+11 chia hết cho 2n+3
suy ra 11 chia hết cho 2n+3( do -4(2n+3) chia hết cho 2n+3)
suy ra 2n+3 thuộc ước của 11
hay 2n+3 thuộc 1;-1;11;-11
hay n thuộc -1;-2;4;-7
vậy n thuộc -1;-2;4;-7
các bài khác cũng nhân ra như vậy là tìm được n
a, -4(2n+3)+11 chia hết cho 2n+3
suy ra 11 chia hết cho 2n+3( do -4(2n+3) chia hết cho 2n+3)
suy ra 2n+3 thuộc ước của 11
hay 2n+3 thuộc 1;-1;11;-11
hay n thuộc -1;-2;4;-7
vậy n thuộc -1;-2;4;-7
Tìm tất cả các số nguyên dương k sao cho tồn tại số nguyên dương n thỏa mãn 2n+11 chia hết cho 2k-1.
Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.
2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m
Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11
Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.
Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.
Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …
Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.
5n +11 =2 (3n+1) +9 -n chia hết cho 3n +1
=> 9 - n =0 => n =9
TK
2n^2 + n - 7 | n - 2
- 2n^2 - 4n | 2n + 5
5n - 7
- 5n - 10
3
Để ( 2n^2 + n - 7)chia hết cho(n - 2) thì 3 chia hết cho (n - 2)
<=> (n - 2) ∈ Ư(3)
<=> n - 2 = 3 <=> n = 5
hoặc n - 2 = -3 <=> n = -1
hoặc n - 2 = 1 <=> n = 3
hoặc n - 2 = -1 <=> n = 1
Vậy n ∈ {-1;1;3;5} thì 2n^2 + n - 7 chia hết cho n - 2
+ 3n+1 chia hết cho 11-2n => 2(3n+1) chia hết cho 11-2n. Ta tìm điều kiện của n để 2(3n+1) chia hết cho 11-2n
+ 2(3n+1)=6n+2= -3(11-2n)+35 Ta thấy -3(11-2n) chia hết cho 11-2n => để 2(3n+1) chia hết cho 11-2n thì 35 phải chia hết cho 11-2n.
=> để 35 chia hết cho 11-2n thì 11-2n=-1, 1, -5, 5, -7, 7, -35, 35.
* Với 11-2n=-1 => n=6
* Với 11-2n=1 => n=5
* Với 11-2n=-5 => n=8
* Với 11-2n=5 => n=3
* Với 11-2n=-7 =>n=9
* Với 11-2n=7 => n=2
* Với 11-2n=-35 => n=23
* Với 11-2n=35 => n=-12
Với n=2, 3, 5, 6, 8, 9, 23, -12 thì 3n+1 chia hết cho 11-2n