K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=25cm

b: Xét tứ giác ABCE có

M là trung điểm của AC

M là trung điểm của BE

Do đó; ABCE là hình bình hành

Suy ra: EC//AB

hay EC⊥AC

c: Vì ABCE là hình bình hành

nên EC//AB

d: Xét ΔMBK có

MA là đường cao

MA là đường trung tuyến

Do đó:ΔMBK cân tại M

3 tháng 3 2022

vẽ hình giúp bạn ơi

a: BC=25cm

b: Xét tứ giác ABCE có

M là trung điểm của AC

M là trung điểm của BE

Do đó; ABCE là hình bình hành

Suy ra: EC//AB

hay EC⊥AC

c: Vì ABCE là hình bình hành

nên EC//AB

d: Xét ΔMBK có

MA là đường cao

MA là đường trung tuyến

Do đó:ΔMBK cân tại M

3 tháng 3 2022

alo hình

18 tháng 12 2022

Sửa đề: M là trug điểm của AC

a: Xét tứ giác ABCE có

M là trung điểm chung của AC và BE

nên ABCE là hình bình hành

=>AB=CE

b: ABCE là hình bình hành

nên CE//AB

=>CE vuông góc với AC

1 tháng 12 2021

Xét ΔMAE và ΔMCB có:

         MA = MC (M là trung điểm của AC)

          ∠AME = ∠CMB (2 góc đối đỉnh)

          ME = MB (gt)

⇒ ΔMAE = ΔMCB (c.g.c)

⇒ AE = BC (2 cạnh tương ứng) (1)

Xét ΔNAF và ΔNBC có:

      NA = NB (N là trung điểm của AB)

      ∠ANF = ∠BNC (2 góc đối đỉnh)

       NF = NC (gt)

⇒ ΔNAF = ΔNBC (c.g.c)

⇒ AF = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) ⇒ AE = AF

Ta có: ΔMAE = ΔMCB (cmt)

⇒ ∠MAE = ∠MCB (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AE // BC (3)

Ta có: ΔNAF = ΔNBC (cmt)

⇒ ∠NAF = ∠NBC (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AF // BC (4)

Từ (3) và (4) ⇒ 3 điểm E, A, F thẳng hàng

a: BC=10cm

c: Điểm I ở đâu vậy bạn?

a: BC=10cm

b: Xét ΔCAB vuông tại A và ΔMAN vuông tại A có

AB=AN

AC=AM

Do đó: ΔCAB=ΔMAN

Suy ra: CB=MN

a) Xét ΔMAB và ΔMCK có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMK}\)(hai góc đối đỉnh)

MB=MK(gt)

Do đó: ΔMAB=ΔMCK(c-g-c)

Suy ra: AB=CK(hai cạnh tương ứng)

Ta có: ΔMAB=ΔMCK(cmt)

nên \(\widehat{MAB}=\widehat{MCK}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MCK}=90^0\)

\(\Leftrightarrow CK\perp CM\) tại C

hay CK\(\perp\)AC(Đpcm)

b) Xét ΔANC và ΔBNI có 

AN=BN(N là trung điểm của AB)

\(\widehat{ANC}=\widehat{BNI}\)(hai góc đối đỉnh)

NC=NI(gt)

Do đó: ΔANC=ΔBNI(c-g-c)

Suy ra: \(\widehat{ACN}=\widehat{BIN}\)(hai góc tương ứng)

mà \(\widehat{ACN}\) và \(\widehat{BIN}\) là hai góc ở vị trí so le trong

nên AC//BI(Dấu hiệu nhận biết hai đường thẳng song song)

Xét ΔAMK và ΔCMB có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMK}=\widehat{CMB}\)(hai góc đối đỉnh)

MK=MB(gt)

Do đó: ΔAMK=ΔCMB(c-g-c)

Suy ra: \(\widehat{AKM}=\widehat{CBM}\)(hai góc tương ứng)

mà \(\widehat{AKM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong

nên AK//BC(Dấu hiệu nhận biết hai đường thẳng song song)

16 tháng 2 2021

Thank you so much! Cảm ơn bạn nha!hihi

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

23 tháng 12 2020

a) Xét ΔAME và ΔCMB có 

AM=CM(M là trung điểm của AC)

\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)

ME=MB(gt)

Do đó: ΔAME=ΔCMB(c-g-c)

⇒AE=BC(hai cạnh tương ứng)

b) Ta có: ΔAME=ΔCMB(cmt)

nên \(\widehat{EAM}=\widehat{BCM}\)(hai góc tương ứng)

mà \(\widehat{EAM}\) và \(\widehat{BCM}\) là hai góc ở vị trí so le trong

nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

c) Xét ΔANF và ΔBNC có 

AN=BN(N là trung điểm của AB)

\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)

NF=NC(gt)

Do đó: ΔANF=ΔBNC(c-g-c)

⇒AF=BC(hai cạnh tương ứng)

Ta có: ΔANF=ΔBNC(cmt)

nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)

mà \(\widehat{AFN}\) và \(\widehat{BCN}\) là hai góc ở vị trí so le trong

nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)

mà AE//BC(cmt)

và AF,AE có điểm chung là A

nên F,A,E thẳng hàng(1)

Ta có: AE=BC(cmt)

mà AF=BC(cmt)

nên AE=AF(2)

Từ (1) và (2) suy ra A là trung điểm của EF(đpcm)

16 tháng 3 2022

a) Áp dụng định lý Py-ta-go vào ∆ABC, ta được:
BC2=AB2+AC2
BC2=52+122=169
BC=13
Vậy BC=13cm
b)Xét ∆ ABM và ∆CEm,có
BM=MC(GT)
AM=ME(GT)
<BMA=<EMC( đối đỉnh)
∆ ABM=∆CEM(c.g.c)
⟹ AB=EC(2 cạnh tương ứng)
⟹BC=AE(do BM=1/2BC(GT); EM=1/2AE(GT) mà BM=EM)
Xét ∆ABC và ∆CEA,ta có:
AB=EC(CMT)
AC cạnh chung
BC=AE(CMT)
⟹ ∆ABC=∆CEA(c.c.c)
⟹<A=<E ( 2 góc tương ứng)
⟹EC⊥ AC; AB⊥ AC⟹AB//EC( quan hệ từ vuông góc đến song song)

17 tháng 3 2022

bạn vẽ hình với ghi giả thiết kết luận nữa