K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2016

Ta sẽ chuyển hết ẩn về một vế, vế còn lại là hằng số. Sau đó dựa vào sự tương ứng về dấu, ta ghép các hạng tử để xuất hiện nhân tử chung.

\(2y^2x+x+y-x^2-2y^2-xy=-1\Leftrightarrow2y^2x-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Từ đó ta có bảng sau:

x-11-1
x20
\(2y^2-x-y\)-11
y\(\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)\(\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)
 \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)\(\hept{\begin{cases}x=0\\y=1\end{cases}}\)
16 tháng 6 2016

2 nghiệm là : ( 2 : -1/2 ) và ( 0; -1/2 ) cũng thỏa mãn sao ko được nhắc đến nhỉ ?. giải thích hộ mình cái ? 

NV
13 tháng 1 2024

a.

\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)

Do \(\left(x-2y\right)^2\ge0;\forall x;y\)

\(\Rightarrow\left(x-2\right)^2\le8\)

\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)

TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)

\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)

TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên

TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):

- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)

Vậy pt có các cặp nghiệm là: 

\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)

NV
13 tháng 1 2024

b.

\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)

\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)

\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)

Lý luận tương tự câu a ta được 

\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)

Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn

Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)

- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)

- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)

3 tháng 3 2018

=> x^2 = 2y^2 + 1

+, Nếu y=3 => ko tồn tại x thuộc p

+, Nếu y khác 3 => y ko chia hết cho 3 => y^2 chia 3 dư 1 => 2y^2 chia 3 dư 2

=> x^2  = 2y^2+1 chia hết cho 3

=> x chia hết cho 3 ( vì 3 là số nguyên tố )

=> x = 3

=> y = 2

Vậy x=3 và y=2

Tk mk nha

29 tháng 8 2021

ai giúp em bài1 và phần b bài 2 với ạ

 

13 tháng 8 2023

\(a,xy-x-y=2\\ x\left(y-1\right)-y=2\\ x\left(y-1\right)-y+1=2+1\\ x\left(y-1\right)-\left(y-1\right)=3\\ \left(y-1\right)\left(x-1\right)=3\\ Th1:x-1=-1=>x=0\\ y-1=-3=>y=-2\\ Th2:x-1=-3 =>x=-2\\ y-1=-1=> y=0\\ Th3:x-1=3=> x=4\\ y-1=1=>y=2\\ Th4:x-1=1=>x=2\\ y-1=3=>y=4\)

Vậy......

\(b,2x^2+3xy-2y^2=7\\ 2x^2+\left(4xy-xy\right)-2y^2=7\\ x\left(2x-y\right)+2y\left(2x-y\right)=7\\ \left(2x-y\right)\cdot\left(x+2y\right)=7\)

Nếu 2x-y=1; x+2y = 7

=> 2(2x-y) + x + 2y = 9

=> 4x - 2y + x +2y = 9

=> (4x+x) + (2y-2y) = 9

=> 5x + 0 = 9 

=> x = 9/5 (ktm)

Nếu 2x-y=7; x+2y = 1

=> 2(2x-y) + x+ 2y = 15

=> 4x - 2y + x +2y =15

=> (4x +x)+ (2y-2y) =15

=> 5x +0 =15

=> x= 3 (tm)

=> y= -1 (Tm)

Nếu  2x-y=-7; x+2y = -1

=> 2(2x-y) + x+ 2y = -15

=> 4x - 2y + x +2y =-15

=> (4x +x)+ (2y-2y) =-15

=> 5x +0 =-15

=> x= -3 (tm)

=> y= 1 (tm)

Nếu 2x-y=-1 ; x+2y = -7

=> 2(2x-y) + x+ 2y = -9

=> 4x - 2y + x +2y = -9

=> (4x +x)+ (2y-2y) =-9

=> 5x +0 =-9

=> x= -9/5 (ktm)

=> y= -1

Vậy.........

\(A=\left(x-y\right)\left(x^2-xy\right)-x\left(x^2+2y^2\right)\)

\(=x^3-x^2y-x^2y+xy^2-x^3-2xy^2\)

\(=-2x^2y-xy^2\)

\(=-2\cdot2^2\cdot\left(-3\right)-2\cdot\left(-3\right)^2\)

\(=8\cdot3-2\cdot9\)

=6

8 tháng 8 2019

27 tháng 8 2021

Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)

Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Chứng minh tương tự:

\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)

Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\) 

 

27 tháng 8 2021

Bạn tham khảo nhé

https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737

14 tháng 8 2023

a) \(2x^2-3xy-2y^2=2\)

\(\Rightarrow2x^2+xy-4xy-2y^2=2\)

\(\Rightarrow x\left(2x+y\right)-2y\left(2x+y\right)=2\)

\(\Rightarrow\left(2x+y\right)\left(x-2y\right)=2\)

\(\Rightarrow\left(2x+y\right);\left(x-2y\right)\in\left\{-1;1;-2;2\right\}\)

Ta giải các hệ phương trình sau với x;y nguyên 

1) \(\left\{{}\begin{matrix}2x+y=-1\\x-2y=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4x+2y=-2\\x-2y=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=-4\left(loại\right)\\x-2y=-1\end{matrix}\right.\)

2) \(\left\{{}\begin{matrix}2x+y=1\\x-2y=2\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}4x+2y=2\\x-2y=2\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}5x=4\left(loại\right)\\x-2y=-1\end{matrix}\right.\)

3) \(\left\{{}\begin{matrix}2x+y=-2\\x-2y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4x+2y=-4\\x-2y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=-5\\y=\dfrac{x+1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)

4)  \(\left\{{}\begin{matrix}2x+y=2\\x-2y=1\end{matrix}\right.\) \(\left\{{}\begin{matrix}4x+2y=4\\x-2y=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=5\\y=\dfrac{x+1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(1;1\right)\right\}\)

14 tháng 8 2023

b) \(xy-y+x=9\)

\(\Rightarrow y\left(x-1\right)+x-1+1=9\)

\(\Rightarrow\left(x-1\right)\left(y+1\right)=8\)

\(\Rightarrow\left(x-1\right);\left(y+1\right)\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(0;-9\right);\left(2;7\right);\left(-1;-5\right);\left(3;3\right);\left(-3;-3\right);\left(5;1\right);\left(-7;-2\right);\left(9;0\right)\right\}\)