Tìm x,y nguyên sao cho:
2y2x + x + y + 1= x2 + 2y2 +xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)
Do \(\left(x-2y\right)^2\ge0;\forall x;y\)
\(\Rightarrow\left(x-2\right)^2\le8\)
\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)
TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)
\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)
TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên
TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):
- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)
- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)
Vậy pt có các cặp nghiệm là:
\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)
b.
\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)
\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)
\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)
Lý luận tương tự câu a ta được
\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)
Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn
Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)
- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)
- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)
=> x^2 = 2y^2 + 1
+, Nếu y=3 => ko tồn tại x thuộc p
+, Nếu y khác 3 => y ko chia hết cho 3 => y^2 chia 3 dư 1 => 2y^2 chia 3 dư 2
=> x^2 = 2y^2+1 chia hết cho 3
=> x chia hết cho 3 ( vì 3 là số nguyên tố )
=> x = 3
=> y = 2
Vậy x=3 và y=2
Tk mk nha
\(a,xy-x-y=2\\ x\left(y-1\right)-y=2\\ x\left(y-1\right)-y+1=2+1\\ x\left(y-1\right)-\left(y-1\right)=3\\ \left(y-1\right)\left(x-1\right)=3\\ Th1:x-1=-1=>x=0\\ y-1=-3=>y=-2\\ Th2:x-1=-3 =>x=-2\\ y-1=-1=> y=0\\ Th3:x-1=3=> x=4\\ y-1=1=>y=2\\ Th4:x-1=1=>x=2\\ y-1=3=>y=4\)
Vậy......
\(b,2x^2+3xy-2y^2=7\\ 2x^2+\left(4xy-xy\right)-2y^2=7\\ x\left(2x-y\right)+2y\left(2x-y\right)=7\\ \left(2x-y\right)\cdot\left(x+2y\right)=7\)
Nếu 2x-y=1; x+2y = 7
=> 2(2x-y) + x + 2y = 9
=> 4x - 2y + x +2y = 9
=> (4x+x) + (2y-2y) = 9
=> 5x + 0 = 9
=> x = 9/5 (ktm)
Nếu 2x-y=7; x+2y = 1
=> 2(2x-y) + x+ 2y = 15
=> 4x - 2y + x +2y =15
=> (4x +x)+ (2y-2y) =15
=> 5x +0 =15
=> x= 3 (tm)
=> y= -1 (Tm)
Nếu 2x-y=-7; x+2y = -1
=> 2(2x-y) + x+ 2y = -15
=> 4x - 2y + x +2y =-15
=> (4x +x)+ (2y-2y) =-15
=> 5x +0 =-15
=> x= -3 (tm)
=> y= 1 (tm)
Nếu 2x-y=-1 ; x+2y = -7
=> 2(2x-y) + x+ 2y = -9
=> 4x - 2y + x +2y = -9
=> (4x +x)+ (2y-2y) =-9
=> 5x +0 =-9
=> x= -9/5 (ktm)
=> y= -1
Vậy.........
\(A=\left(x-y\right)\left(x^2-xy\right)-x\left(x^2+2y^2\right)\)
\(=x^3-x^2y-x^2y+xy^2-x^3-2xy^2\)
\(=-2x^2y-xy^2\)
\(=-2\cdot2^2\cdot\left(-3\right)-2\cdot\left(-3\right)^2\)
\(=8\cdot3-2\cdot9\)
=6
Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)
Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Chứng minh tương tự:
\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)
Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Bạn tham khảo nhé
https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737
a) \(2x^2-3xy-2y^2=2\)
\(\Rightarrow2x^2+xy-4xy-2y^2=2\)
\(\Rightarrow x\left(2x+y\right)-2y\left(2x+y\right)=2\)
\(\Rightarrow\left(2x+y\right)\left(x-2y\right)=2\)
\(\Rightarrow\left(2x+y\right);\left(x-2y\right)\in\left\{-1;1;-2;2\right\}\)
Ta giải các hệ phương trình sau với x;y nguyên
1) \(\left\{{}\begin{matrix}2x+y=-1\\x-2y=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4x+2y=-2\\x-2y=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=-4\left(loại\right)\\x-2y=-1\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}2x+y=1\\x-2y=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4x+2y=2\\x-2y=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=4\left(loại\right)\\x-2y=-1\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}2x+y=-2\\x-2y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4x+2y=-4\\x-2y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=-5\\y=\dfrac{x+1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}2x+y=2\\x-2y=1\end{matrix}\right.\) \(\left\{{}\begin{matrix}4x+2y=4\\x-2y=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=5\\y=\dfrac{x+1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(1;1\right)\right\}\)
b) \(xy-y+x=9\)
\(\Rightarrow y\left(x-1\right)+x-1+1=9\)
\(\Rightarrow\left(x-1\right)\left(y+1\right)=8\)
\(\Rightarrow\left(x-1\right);\left(y+1\right)\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(0;-9\right);\left(2;7\right);\left(-1;-5\right);\left(3;3\right);\left(-3;-3\right);\left(5;1\right);\left(-7;-2\right);\left(9;0\right)\right\}\)
Ta sẽ chuyển hết ẩn về một vế, vế còn lại là hằng số. Sau đó dựa vào sự tương ứng về dấu, ta ghép các hạng tử để xuất hiện nhân tử chung.
\(2y^2x+x+y-x^2-2y^2-xy=-1\Leftrightarrow2y^2x-2y^2+x-x^2+y-xy=-1\)
\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)
Từ đó ta có bảng sau:
2 nghiệm là : ( 2 : -1/2 ) và ( 0; -1/2 ) cũng thỏa mãn sao ko được nhắc đến nhỉ ?. giải thích hộ mình cái ?