Cho hinh vuông ABCD. Trên cạnh BC lấy điểm E . Tia AE cắt đường thẳng CD tại M , tia DE cắt đường thẳng AB tai N . Cmr :
a, Tam giác NBC đồng dạng với tam giác BCM
b, BM vuông góc CN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$a)$ Theo giả thiết ta có:
$AB//CM \Rightarrow \dfrac{AB}{CM}=\dfrac{EB}{EC}(1)$
$BN//CD \Rightarrow \dfrac{BN}{CD}=\dfrac{EB}{EC}(1)$
Từ $(1)$ và $(2)$, suy ra $\dfrac{AB}{CM}=\dfrac{BN}{CD}(3)$
Mặt khác, $AB=BC=CD$ nên từ $(3)$, suy ra $\dfrac{BC}{CM}=\dfrac{BN}{CB}$
Xét $\Delta NBC$ và $\Delta BCM$ có:
$\widehat{B}=\widehat{C}=90^0$
$\dfrac{BC}{CM}=\dfrac{BN}{CB}$ nên $\Delta NBC ~ \Delta BCM (c-g-c)$
$b)$ Theo câu $a)$ ta có: $\Delta NBC ~ \Delta BCM \Rightarrow \widehat{BCN}=\widehat{BMC}$ (so le trong)
Gọi $O$ là giao điểm của $BM$ và $CN$
Xét $\Delta OCM$ có: $\widehat{M}+\widehat{MCO}=\widehat{BCN}+\widehat{MCO}=90^0$
Suy ra: $BM \bot CN$
a: ΔACB cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{FCN}\)(hai góc đối đỉnh)
nên \(\widehat{ABC}=\widehat{FCN}\)
Xét ΔEBM vuông tại M và ΔFCN vuông tại N có
BM=CN
\(\widehat{EBM}=\widehat{FCN}\)
Do đó: ΔEBM=ΔFCN
=>EM=FN
b: ED//AC
=>\(\widehat{EDB}=\widehat{ACB}\)(hai góc đồng vị)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EDB}=\widehat{ABC}\)
=>\(\widehat{EBD}=\widehat{EDB}\)
=>ΔEBD cân tại E
ΔEBD cân tại E
mà EM là đường cao
nên M là trung điểm của BD
=>MB=MD
c: EM\(\perp\)BC
FN\(\perp\)BC
Do đó: EM//FN
Xét ΔOME vuông tại M và ΔONF vuông tại N có
ME=NF
\(\widehat{MEO}=\widehat{NFO}\)(hai góc so le trong, EM//FN)
Do đó: ΔOME=ΔONF
=>OE=OF