Tìm các số nguyên a và b sao cho: \(a^2-2ab+2b^2-4a+7< 0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:
a2 -2ab + 2b2 - 4a + 8 < hoặc = 0
<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0
<=> ( a-2b)2 + (a-4)2 < hoặc = 0
Dấu "=" xảy ra khi :
a=4;b=2
Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:
a2 -2ab + 2b2 - 4a + 8 < hoặc = 0
<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0
<=> ( a-2b)2 + (a-4)2 < hoặc = 0
Dấu "=" xảy ra khi :
a=4;b=2
Đáp án:
Cho a,b,c thỏa mãn:
2ab(2b-a)-2ac(c-2a)-2bc(b-2c)= 7abc
CMR:Tồn tại 1số bằng 2 số kia.
Giải thích các bước giải:
Lời giải:
$5a^2+2b^2=11ab$
$\Leftrightarrow 5a^2+2b^2-11ab=0$
$\Leftrightarrow (5a^2-10ab)-(ab-2b^2)=0$
$\Leftrightarrow 5a(a-2b)-b(a-2b)=0$
$\Leftrightarrow (a-2b)(5a-b)=0$
Do $a>2b>0$ nên $a-2b>0$. Do dó $5a-b=0$
$\Leftrightarrow b=5a$. Khi đó:
$A=\frac{4a^2-5b^2}{a^2+2ab}=\frac{4a^2-5(5a)^2}{a^2+2a.5a}=\frac{-121a^2}{11a^2}=-11$
Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:
a2 -2ab + 2b2 - 4a + 8 < hoặc = 0
<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0
<=> ( a-2b)2 + (a-4)2 < hoặc = 0
Dấu "=" xảy ra khi :
a=4;b=2
Tham khảo nx nhaa