K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2016

Chứng minh như sau : 

Gọi \(S_{2n+1}\)là tổng của n số lẻ đầu tiên.

Trước tiên ta sẽ đưa tổng sau về dạng tổng quát : \(T_n=1+2+3+...+n\)(Tổng của n số tự nhiên đầu tiên)

Làm như sau : \(T=1+2+3+...+n\)(1)

Viết lại : \(T=n+\left(n-1\right)+\left(n-2\right)+...+3+2+1\)(2)

Cộng (1) và (2) theo vế được : \(2T=\left(n+1\right)+\left(n-1+2\right)+\left(n-2+3\right)+...+\left(3+n-2\right)+\left(2+n-1\right)+\left(1+n\right)\)

\(=\left(n+1\right)+\left(n+1\right)+\left(n+1\right)+...+\left(n+1\right)+\left(n+1\right)+\left(n+1\right)\)( Có tất cả n số hạng (n+1))

\(=n\left(n+1\right)\)\(\Rightarrow T=\frac{n\left(n+1\right)}{2}\)

Ta có : \(S_{2n+1}=1+3+5+...+\left(2n+1\right)=\left(2.0+1\right)+\left(2.1+1\right)+\left(2.2+1\right)+...+\left(2.n+1\right)\)

\(=2.\left(1+2+3+...+n\right)+n+1\)

\(=2.\frac{n\left(n+1\right)}{2}+\left(n+1\right)=n\left(n+1\right)+\left(n+1\right)=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)

Vậy \(S_{2n+1}\)là só chính phương.

1 tháng 7 2015

n số lẻ đầu tiên là: 1; 3; 5 ; ...; 2n  - 1

Tổng của n số lẻ là: (1+ 2n-  1) x n : 2 = 2n2 : 2 = n2 là số chính phương

Vậy ....

20 tháng 8 2017

n là bn

1 tháng 7 2015

có hỏi nhưng chưa trả lời

 

2 tháng 8 2020

ta gọi số cần tìm là abcd (có gạch trên đầu abcd)

theo đề ra ta có n2 = abcd (có gạch trên đầu abcd)

và ⎧⎩⎨⎪⎪a=d−2b=d−3c=d−1{a=d−2b=d−3c=d−1

vì n2 có tận cùng ∈ {0;1;4;5;6;9} ⇒ d ∈{0;1;4;5;6;9}

mà a ≥ 1 => d ≥ 3 ⇒ d ∈ {4;5;6;9}

=> abcd ( có gạch trên đầu ) ∈ {2134;3245;4356;7689}

thử lại ta thấy chỉ có 4356 = 662 là thỏa mãn

vậy số cần tìm là 4356

2 tháng 7 2015

n số lẻ đầu tiên là: 1; 3; 5 ; ...; 2n  - 1

Tổng của n số lẻ là: (1+ 2n-  1) x n : 2 = 2n2 : 2 = n2 là số chính phương

Vậy ....

18 tháng 1 2021

Vì n lẻ \(\Rightarrow\)Đặt \(n=2k+1\)\(k\inℕ\))

Tổng của n số tự nhiên lẻ đầu tiên là: \(1+3+5+.........+\left(2k+1\right)\)

Đặt \(S=1+3+5+......+\left(2k+1\right)\)

Tổng S trên có số số hạng là: \(\frac{\left(2k+1\right)-1}{2}+1=k+1\)

\(\Rightarrow S=\frac{\left[\left(2k+1\right)+1\right].\left(k+1\right)}{2}=\frac{2\left(k+1\right)^2}{2}=\left(k+1\right)^2\)

\(\Rightarrow S\)là số chình phương ( đpcm )

31 tháng 7 2015

Ta tính tổng n số lẻ đầu tiên:

S = 1 + 3 + 5 + 7 +...+ (2n - 3) + (2n - 1).

Lúc này ta phải xét hai trường hợp: n chẵn và n lẻ.

Trường hợp 1:   n chẵn

S = (1 + 2n - 1) + (3 + 2n - 3)+...    Có n/2 số hạng , mà mỗi số hạng có giá trị là 2n

Vậy S = 2n.  = n2.

Trường hợp 2: n lẻ

Để tính S ta cũng ghép như trường hợp trên nhưng ta được  số hạng, mỗi số hạng có giá trị là 2n. Nên tổng  S =  .2n + n = = n2

Vậy S = 1 + 3 + 5 + 7 +...+ (2n - 3) + (2n - 1) = n2 nên S là một số chính phương

12 tháng 9 2016

tong cua n so tu nhien chan tu2 den 2n co phai la 1 so chinh phuong ko vi sao

21 tháng 11 2023

cái này không chắc nhé

có 1012 tập hợp con

 gồm (1,2024);(2,2023);(3,2022);...

Chứng minh: theo mình thì nó như vậy.

Tổng của các tập hợp con đều bằng 2025

Mà số chính phương của 2025 là 45. 

Như vậy đã đáp ứng được yêu cầu của đề bài