K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2016

mà đề cho (a^2 + b^2) + (c^2 + d^2) thì phải liên tưởng đến (a^2 + b^2)(c^2 + d^2) để đưa vào bất đẳng thức. Vậy phải xuất phát từ biểu thức này và biến đổi theo một cách nào đó cho nó xuất hiện giả thiết là : ad - bc = 1. Ở đây là thêm và bớt 2abcd 
Ta có: (a^2 + b^2)(c^2 + d^2) = (ac)^2 + (bd)^2 + (ad)^2 + (bc)^2 - 2abcd + 2abcd = (ad - bc)^2 + (ac + bd)^2 
Thay: ad - bc = 1 => 1 + (ac + bd)^2 = (a^2 + b^2)(c^2 + d^2) 
Áp dụng BĐT Cauchy: 
(a^2 + b^2) + (c^2 + d^2) ≥ 2√[(a^2 + b^2)(c^2 + d^2)] 
=> a^2 + b^2 + c^2 + d^2 + ac + bd ≥ 2√[(a^2 + b^2)(c^2 + d^2)] + ac + bd 
Do đó chỉ cần CM: 2√[(a^2 + b^2)(c^2 + d^2)] + ac + bd ≥ √3 
<=> 2 √[1 + (ac + bd)^2] + ac + bd ≥ √3 
Đặt ac + bd = x và p = 2√(1 + x^2) + x 
Ta có IxI = √(x^2) < 2√(1 + x^2) ; mà IxI ≥ -x => p > 0 
Xét: p^2 = 4(1 + x)^2 + 4x√(1 + x^2) + x^2 = (1 + x^2) + 4x√(1 + x^2) + 4x^2 + 3 
= [√(1 + x^2) + 2x]^2 + 3 ≥ 3 => p^2 ≥ 3 => p ≥ √3 
=> S ≥ √3 
b/ Dấu đẳng thức xảy ra khi a^2 + b^2 = c^2 + d^2 và √(1 + x^2) + 2x = 0 => x = -1/√3 
Khi đó có: a^2 + b^2 = c^2 + d^2 và ac + bd = -1/√3 và ad - bc = 1 
Theo biến đổi ở đầu bài thì (a^2 + b^2)(c^2 + d^2) = (ad - bc)^2 + (ac + bd)^2 = 1 + 1/3 = 4/3 
Do đó: a^2 + b^2 = c^2 + d^2 = 2/√3 
Ta có: (a + c)^2 + (b + d)^2 = a^2 + c^2 + b^2 + d^2 + 2ac + 2bd = 2. 2/√3 + 2.(-1/√3) = 2/√3 
vậy: (a + c)^2 + (b + d)^2 = 2/√3

Học chi cho lắm cx bằng nhau à

a: Ta có: \(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)

\(=a^2c^2+b^2d^2+2abcd-a^2d^2-b^2c^2-2abcd\)

\(=a^2\left(c^2-d^2\right)-b^2\left(c^2-d^2\right)\)

\(=\left(a^2-b^2\right)\left(c^2-d^2\right)\)

12 tháng 8 2021

Bạn có làm đc câu b ko, nếu đc thì làm nốt giùm mink nha

24 tháng 6 2015

a)a+b+c=9

=>(a+b+c)2=81

=>a2+b2+c2+2ab+2bc+2ca=81

Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60

=>2(ab+bc+ca)=-60=>ab+bc+ca=-30

b)x+y=1

=>(x+y)3=1

=>x3+3x2y+3xy2+y3=1

=>x3+y3+3xy(x+y)=1

=>x3+y3+3xy=1(Do x+y=1)

c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)

=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0

d)đang tìm hướng giải

18 tháng 7 2015

bài 1 : a +b , rút gọn và tính

(-a+b-c)-(a-b-c)= -a+b -c-a+b+c= -2a+2b-2.1+2.-1=-2+-2 = -4

 

12 tháng 5 2019

a) Chọn đáp án C

b) Chọn đáp án B

27 tháng 6 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)thì \(a=kb;c=kd\)

Ta có :\(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{bd.k^2}{bd}=k^2\)    (1)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}\)

\(=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{\left(b^2+d^2\right).k^2}{b^2+d^2}=k^2\)    (2)

Từ (1) và (2) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

17 tháng 2 2019

a) 45 chia 9 nhân 2

45 : 9 x 2 = 5 x 2

= 10

b) 45 nhân 2 chia 9

45 x 2 : 9 = 90 : 9

= 10

c) 56 chia 7 chia 2

56 : 7 : 2 = 8 : 2

= 4

d) 56 chia 2 chia 7

56 : 2 : 7 = 28 : 7

= 4

29 tháng 10 2018

Đặt \(A=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{b\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)

\(A=\frac{a-b}{\sqrt{a-b}.\sqrt{a+b}}\)

\(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)

Với \(a=3b\) ta có : \(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}=\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\frac{\sqrt{2}}{2}\)

Chúc bạn học tốt ~ 

29 tháng 10 2018

mn làm giúp mk vs