Tìm 3 số a, b, c lần lượt tỉ lệ nghịch với \(\frac{8}{7};\frac{8}{9};\frac{5}{7}\) và hiệu của a và b là 20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,4a=5b\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{b-a}{4-5}=\dfrac{27}{-1}=-27\\ \Leftrightarrow\left\{{}\begin{matrix}a=-135\\b=-108\end{matrix}\right.\\ 2,\dfrac{1}{3}x=\dfrac{1}{2}y=\dfrac{1}{5}z\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{5}=\dfrac{x+2y-z}{3+4-5}=\dfrac{8}{2}=4\\ \Leftrightarrow\left\{{}\begin{matrix}x=12\\y=8\\z=20\end{matrix}\right.\\ 3,\dfrac{1}{3}a=\dfrac{1}{2}b;\dfrac{1}{5}a=\dfrac{1}{7}c\\ \Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{184}{46}=4\\ \Leftrightarrow\left\{{}\begin{matrix}a=60\\b=40\\c=84\end{matrix}\right.\)
Gọi a,b là 2 số cần tìm(a>b>0 và a,b thuộc Z)
Theo đề:a+b,a-b,ab tỉ lệ nghịch với 20,140,7
<=>20(a+b)=140(a-b)(1) và 140(a-b)=7ab (2)
Ta có:
(1)<=>20b+140b=140a-20a
<=>160b=120a
=>a=4/3.b thế vào (2) đc:
140(4/3b-b)=7.(4/3 b)b
<=>140/3.b=28/3.b²
<=>b=(140/3):(28/3)=5
=>a=4/3.5=20/3(loại vì a thuộc Z)
Vậy hok có a,b nào thỏa mãn điều kiện đề bài
a và b tỉ lệ thuận với 7 và 11 nên a/7 = b/11 <=> a/56=b/88 (1)
b và c tỉ lệ nghịch với 3 và 8 nên 3b=8c <=> b/8 = c/3 <=> b/88 = c/33 (2)
Từ (1) và (2) suy ra a/56=b/88=c/33
Hay 5a/280=3b/264=2c/66 và 5a - 3b + 2c = 164
Vậy 5a/280=3b/264=2c/66 = (5a-3b+2c)/(280-264+66) = 164/82 = 2
Do đó:
a=2.56=112
b=2.88=176
c=2.33=66
tk nha bạn
thank you bạn
(^_^)
Bài làm
Gọi số đo của ba góc A, B, C lần lượt là x, y, z
Mà số đo của các góc lần lượt tỉ lệ với \(\frac{1}{2};\frac{1}{3};\frac{2}{5}\)
=> \(x.\frac{1}{2}.\frac{1}{30}\)= \(x.\frac{1}{3}.\frac{1}{30}\)=\(x.\frac{2}{5}.\frac{1}{30}\)
=> \(\frac{x}{60}\)= \(\frac{y}{90}\)= \(\frac{z}{75}\)
Vì theo định lí, tổng ba góc của tam giác là 180o
=> x + y + z = 180o
Áp dụng tính chất dãy tỉ số bằng nhau:
Ta có: \(\frac{x}{60}=\frac{y}{90}=\frac{z}{75}=\frac{x+y+z}{60+90+75}=\frac{180}{225}=\frac{36}{45}=\frac{4}{5}\)
Do đó: \(\hept{\begin{cases}\frac{x}{60}=\frac{4}{5}\\\frac{y}{90}=\frac{4}{5}\\\frac{z}{75}=\frac{4}{5}\end{cases}}\Rightarrow\hept{\begin{cases}x=48\\y=72\\z=60\end{cases}}\)
Vậy độ dài của góc A là 48o
độ dài của góc B là 72o
độ dài của góc C là 60o
# Chúc bạn học tốt #
Ta có: a.8/7 = b.8/9 = c.5/7
=> \(\frac{a}{\frac{7}{8}}=\frac{b}{\frac{9}{8}}=\frac{c}{\frac{7}{5}}=\frac{b-a}{\frac{9}{8}-\frac{7}{8}}=\frac{20}{\frac{1}{4}}=80\) (áp dụng tính chất của dãy tỉ số bằng nhau)
=> a = 80 x 7/8 = 70
=> b = 70 + 20 = 90
=> c = 80 x 7/5 = 112
1/Tính
\(\left(\frac{3}{7}\right)^{20}:\left(\frac{9}{49}\right)^5\)
\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3^2}{7^2}\right)^5\)
\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{10}\)
\(=\left(\frac{3}{7}\right)^{10}\)
2/ Ta có:A+B+C = 180 độ ( tổng 3 góc tam giác)
Và : \(A.\frac{1}{2}=B.\frac{1}{3}=C.\frac{2}{5}\)
hay \(\frac{A}{\frac{2}{1}}=\frac{B}{\frac{3}{1}}=\frac{C}{\frac{5}{2}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{A}{\frac{2}{1}}=\frac{B}{\frac{3}{1}}=\frac{C}{\frac{5}{2}}=\frac{A+B+C}{\frac{2}{1}+\frac{3}{1}+\frac{5}{2}}=\frac{180}{\frac{15}{2}}=24\)
=> \(A=24.\frac{2}{1}=48\)độ
\(B=24.\frac{3}{1}=72\)độ
\(C=24.\frac{5}{2}=60\)độ
Theo đề ra ta có:
\(\frac{8a}{7}=\frac{8b}{9}=\frac{5c}{7}hay\frac{a}{\frac{7}{8}}=\frac{b}{\frac{9}{8}}=\frac{c}{\frac{7}{5}}\)
và \(a-b=20\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{\frac{7}{8}}=\frac{b}{\frac{9}{8}}=\frac{c}{\frac{7}{5}}=\frac{a-b}{\frac{7}{8}-\frac{9}{8}}=\frac{20}{\frac{-1}{4}}=-80\)
\(\rightarrow a=-80\cdot\frac{7}{8}=-70\)
\(\rightarrow b=-80\cdot\frac{9}{8}=-90\)
\(\rightarrow c=-80\cdot\frac{7}{5}=-112\)