so sanh
\(\frac{-2015}{2016}va\frac{-2016}{2017}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{-2015}{-2016}=\frac{2015}{2016};\frac{-2016}{-2017}=\frac{2016}{2017}\)
\(\frac{2015}{2016}=1-\frac{1}{2016}\);\(\frac{2016}{2017}=1-\frac{1}{2017}\)
Có \(\frac{1}{2016}>\frac{1}{2017}\Rightarrow1-\frac{1}{2016}< 1-\frac{1}{2017}\Rightarrow\frac{-2015}{-2016}< \frac{-2016}{-2017}\)
TA ĐA
Ta có:
\(\frac{-2015}{2016}=-1+\frac{1}{2016}\)
\(\frac{-2016}{2017}=-1+\frac{1}{2017}\)
Vì \(\frac{1}{2016}>\frac{1}{2017}\) nên \(-1+\frac{1}{2016}>-1+\frac{1}{2017}\)
\(\Rightarrow\frac{-2015}{2016}>\frac{-2016}{2017}\)
Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 2
S = h * (a+b)1/2
Trong đó
a: Cạnh đáy 1
b: Cạnh đáy 2
h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)
Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:
S(ABCD) = 7 * (8+13)/2 = 73.5
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 3
Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:
S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6
\(A=\frac{2014}{2015}-\frac{2015}{2016}+\frac{2016}{2017}-\frac{2017}{2018}=\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}\)
\(\Rightarrow A>0;B=\frac{1}{2015}-\frac{1}{2014}+\frac{1}{2017}-\frac{1}{2016}\)
\(\Rightarrow B< 0\Rightarrow B< 0< A\Rightarrow A>B\)
Ta thấy :
\(\frac{2014}{2016}>\frac{2014}{2016+2017}\)
\(\frac{2015}{2017}>\frac{2015}{2016+2017}\)
\(\Rightarrow\frac{2014}{2106}+\frac{2015}{2017}>\frac{2014}{2016+2017}+\frac{2015}{2016+2017}=\frac{2014+2015}{2016+2017}\)
=> B>A
\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\)\(\frac{2017}{2016+2017+2018}\)
ta có :
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
nên \(P>Q\)
Q=2015+2016+2017/2016+2017+2018=+2018+2016/2016+2017+2018+2017/2016+2017+2018
vì 2015/2016>2015/2016+2017+2018[1]
2016/2017>2016+2017+2018[2]
2017/2018>2016+2017+2018[3]
từ [1] [2] [3] suy ra P>Q
Ta có: \(A=\frac{2017^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)
\(\Leftrightarrow A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{10}}\)
\(B=\frac{2016^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
\(\Leftrightarrow B=\frac{\left[\left(20.100+16\right)\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
Ta có hai tổng A và B mới để so sánh:
\(A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)
\(B=\frac{\left[\left(20.100\right)+16\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
Tới đây đơn giản rồi. Bạn làm tiếp đi nhé! Mẹ mình bắt tắt máy không cho làm nên đành dừng lại ở đây thôi! Thông cảm :V
Giải:
Ta có:
\(A=\frac{2014+2015}{2015+2016}=\frac{2014+2015+2}{2015+2016}-\frac{2}{2015+2016}=2-\frac{2}{2015+2016}\)(1)
\(B=\frac{2015+2016}{2016+2017}=\frac{2015+2016+2}{2016+2017}-\frac{2}{2016+2017}=2-\frac{2}{2016+2017}\)(2)
Từ (1) và (2) ta có: \(A=2-\frac{2}{2015+2016}\)và \(B=2-\frac{2}{2016+2017}\)
Vì \(\frac{2}{2015+2016}>\frac{2}{2016+2017}\rightarrow2-\frac{2}{2015+2016}< 2-\frac{2}{2016+2017}\)
\(\Rightarrow A< B\)
Ta có
-2015.2017>-2016.2016(4064255>4064256)
=>-2015/2016>-2016/2017