(Quảng Ngãi)
Cho phương trình x2 - (3m + 1)x + 2m2 + m - 1 = 0 (1) với m là tham số.
a/ Chứng minh phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m
b/ Gọi x1, x2 là các nghiệm của phương trình (1). Tìm m để biểu thức B = x12 + x22 - 3x1x2 đạt giá trị lớn nhất.
a, \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)
\(\Delta=\left(3m+1\right)^2-4\left(2m^2+m-1\right)\)
\(=9m^2+6m+1-8m^2-4m+4\)
\(=m^2+2m+1+4\)
\(=\left(m+1\right)^2+4\) \(\ge4\)với \(\forall m\)
\(\Rightarrow\)Phương trình luôn có \(2n_0\)phân biệt với mọi m
b,
Theo vi-ét :
\(\hept{\begin{cases}x_1+x_2=3m+1\\x_1x_2=2m^2+m-1\end{cases}}\)
\(B=x_1^2+x_2^2-3x_1x_2\)
\(=\left(x_1+x_2\right)^2-5x_1x_2\)
\(=\left(3m+1\right)^2-5\left(2m^2+m-1\right)\)
\(=9m^2+6m+1-10m^2-5m+5\)
\(=-m^2+m+6\)
\(=-\left(m^2-m-6\right)\)
\(=-\left[\left(m-\frac{1}{2}\right)^2-\frac{1}{4}-6\right]\)
\(=-\left[\left(m-\frac{1}{2}\right)^2-\frac{25}{4}\right]\)
\(=-\left(m-\frac{1}{2}\right)^2+\frac{25}{4}\)
Vậy GTLN \(B=\frac{25}{4}\)khi \(-\left(m-\frac{1}{2}\right)^2=0\) \(\Leftrightarrow m=\frac{1}{2}\)