cho tam giác ABC có góc BAC = 2 góc CBA = 4 góc ACB. Chứng minh 1/AB = 1/BC + 1/CA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Góc \(\widehat{BCx}\) kề bù \(\widehat{BCA}\) => \(\widehat{BCx}+\widehat{BCA}=180\Rightarrow\widehat{BCx}=180-40=140\)
Vì Cy là phân giác \(\widehat{BCx}\)nên \(\widehat{BCy}=\frac{1}{2}\widehat{BCx}=70\Rightarrow\widehat{BCy}=\widehat{ABC}\)ở vị trí so le trong => Cy // AB
2) Xét tam giác ABC: \(\widehat{BCA}+\widehat{ABC}+\widehat{BAC}=180\Rightarrow\widehat{BAC}=180-70-40=70\)
3) Có \(CH\perp AB\)mà \(AB//Cy\)nên \(CH\perp Cy\)
c: Xét ΔBAC vuông tại B có
\(\sin C=\dfrac{AB}{AC}=\dfrac{1}{2}\)
\(\Leftrightarrow\widehat{C}=30^0\)
hay \(\widehat{BAC}=60^0\)
a: Ta có:ΔABC vuông tại B
=>\(\widehat{BAC}+\widehat{BCA}=90^0\)
=>\(\widehat{BAC}+50^0=90^0\)
=>\(\widehat{BAC}=40^0\)
b: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
c: Xét ΔFAB vuông tại A và ΔEBA vuông tại B có
AB chung
\(\widehat{FBA}=\widehat{EAB}\)(hai góc so le trong, FB//AE)
Do đó: ΔFAB=ΔEBA
d: Sửa đề: I là trung điểm của BA
Xét tứ giác AFBE có
AF//BE
AE//BF
Do đó: AFBE là hình bình hành
=>AB cắt FE tại trung điểm của mỗi đường
mà I là trung điểm của AB
nên I là trung điểm của FE
=>F,I,E thẳng hàng
(Hình bạn tự vẽ)
a) Ta có: \(\dfrac{AB}{BC}=\dfrac{6}{9}=\dfrac{2}{3}\)
\(\dfrac{BC}{BD}=\dfrac{9}{6+7,5}=\dfrac{2}{3}\)
Xét ΔABC và ΔCBD có:
Góc B chung
\(\dfrac{AB}{BC}=\dfrac{BC}{BD}\)\(\left(=\dfrac{2}{3}\right)\)
⇒ΔABC ∼ ΔCBD (c.g.c)
b) Theo câu a ta có: ΔABC ∼ ΔCBD
⇒ \(\dfrac{AB}{AC}=\dfrac{CB}{CD}\)\(=\dfrac{6}{7,5}=\dfrac{9}{CD}\)
⇒ \(CD=\dfrac{7,5.9}{6}\)\(=\dfrac{45}{4}=11,25\)
c) Theo câu a ta có: ΔABC ∼ ΔCBD
⇒ Góc BAC = góc BCD (1)
Xét ΔBCD có: \(\dfrac{BA}{AD}=\dfrac{BC}{CD}\)
Hay \(\dfrac{6}{7,5}=\dfrac{9}{11,25}\)\(=\dfrac{4}{5}\)
⇒ CA là phân giác góc BCD
⇒ Góc ACB= góc ACD (2)
Từ (1), (2) ⇒ góc BAC = 2 góc ACB