D=x2\(\left[x+y\right]\)-2\(\left[x+y\right]\)+x2-y2+2\(\left[x+y\right]\)+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4\ge2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow x+y\le2\)
Ta có: \(P=\sqrt{x\left(14x+10y\right)}+\sqrt{y\left(14y+10x\right)}\)
\(=\sqrt{\dfrac{24x\left(14x+10y\right)}{24}}+\sqrt{\dfrac{24y\left(14y+10x\right)}{24}}\le\dfrac{\dfrac{24x+14x+10y}{2}}{\sqrt{24}}+\dfrac{\dfrac{24y+14y+10x}{2}}{\sqrt{24}}\)
\(\Leftrightarrow P\le\dfrac{24\left(x+y\right)}{2\sqrt{6}}\le\dfrac{24.2}{2\sqrt{6}}=4\sqrt{6}\)
Dấu "=" xảy ra ⇔ x = y = 1
Ta có 1 + x2 = xy + yz + xz + x2 = (xy + x2) + (yz + xz) = (x + y)(x + z)
=> \(1x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}=\:x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=\:x\left|y+z\right|\)
Tương tự như vậy thì ta có
A = xy + xz + yx + yz + zx + zy = 2
a) \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)
\(=2-6xy-3+6xy=-1\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x,y\)
b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2x^2+50}{x^2+25}=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x\)
Pt hoành độ giao điểm: \(x^2-mx-1=0\)
\(ac=-1< 0\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-1\end{matrix}\right.\)
\(y_1+y_2=y_1y_2\Leftrightarrow mx_1+1+mx_2+1=x_1^2x_2^2\)
\(\Leftrightarrow m\left(x_1+x_2\right)+2=1\)
\(\Leftrightarrow m^2+1=0\) (vô nghiệm)
Vậy ko tồn tại m thỏa mãn đều bài
\(x_M=\dfrac{x_A+x_B}{2}=\dfrac{m}{2}\) ;
\(y_M=\dfrac{y_A+y_B}{2}=\dfrac{mx_A+1+mx_B+1}{2}=\dfrac{m\left(x_A+x_B\right)+2}{2}=\dfrac{m^2+2}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}m=2x_M\\m^2=2y_M-2\end{matrix}\right.\)
\(\Rightarrow\left(2x_M\right)^2=2y_M-2\)
\(\Rightarrow y_M=2x_M^2+1\)
\(\Rightarrow\) Quỹ tích M là parabol có pt \(y=2x^2+1\)
Bạn cần bổ sung yêu cầu đề bài để được hỗ trợ tốt hơn.