K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016

a/ \(\left(x+y+z\right)^3-x^3-y^3-z^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

b/ Đề bài thiếu dữ kiện.

30 tháng 9 2017

a)

( x + y +  = ) 3  - x3 - y3 =3 = x3 + y3 =3 + 3( x + y ) (y + = ) ( = + x ) - x3 - y3 - =3

= 3( x + y ) ( y + = ) ( = + x )

b) Đề bài thiếu điều kiện

2 tháng 9 2017

 với mọi x, y, z ta có: 

(x-y)^2 +(y-z)^2+ (z-x)^2>=0 

<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0 

<=>x^2 + y^2 +z^2 - xy -yz -zx >=0 

<=>(x+y+z)^2 >= 3(x+y+z) 

<=>[(x+y+z)^2]/3 >= xy+yz+ zx 

=>xy +yz + zx <=3 

dấu = xảy ra khi x=y=z =1

hình như bài của mik làm có j đó sai sai

2 tháng 9 2017

với mọi x, y, z ta có: 

(x-y)^2 +(y-z)^2+ (z-x)^2>=0 

<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0 

<=>x^2 + y^2 +z^2 - xy -yz -zx >=0 

<=>(x+y+z)^2 >= 3(x+y+z) 

<=>[(x+y+z)^2]/3 >= xy+yz+ zx 

=>xy +yz + zx <=3 

dấu = xảy ra khi x=y=z =1

AH
Akai Haruma
Giáo viên
28 tháng 5 2022

Lời giải:

Sửa: $x^2\geq y^2+z^2$
Áp dụng BĐT Cauchy-Schwarz:

$P\geq \frac{y^2+z^2}{x^2}+\frac{7x^2}{2}.\frac{4}{y^2+z^2}+2007$

$=\frac{y^2+z^2}{x^2}+\frac{14x^2}{y^2+z^2}+2007$

$=\frac{y^2+z^2}{x^2}+\frac{x^2}{y^2+z^2}+\frac{13x^2}{y^2+z^2}+2007$

$\geq 2+\frac{13x^2}{y^2+z^2}+2007$ (áp dụng BĐT Cô-si)

$\geq 2+13+2007=2022$ (do $x^2\geq y^2+z^2$)

Vậy $P_{\min}=2022$

 

25 tháng 2 2018

x+y+z=0;xy+yz+xz=0

⇒(x+y+z)2=x2+y2+z2+2(xy+yz+xz)=0

⇒(x+y+z)2=x2+y2+z2=0

⇒x=y=z=0

⇒S=(x−1)2005+(y−1)2006+(z+1)2007=(−1)2005+(−1)2006+12007=1

7 tháng 6 2018

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2013}=\frac{1}{x+y+z}\Rightarrow\frac{yz+xz+xy}{xyz}=\frac{1}{x+y+z}\Rightarrow\left(yz+xz+xy\right)\left(x+y+z\right)=xyz\)

\(\Rightarrow y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz+xyz=xyz\)

\(\Rightarrow y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz=0\)

\(\Rightarrow\left(x^2y+x^2z+xy^2+xyz\right)+\left(y^2z+xz^2+y^2z+xyz\right)=0\)

\(\Rightarrow x\left(xy+xz+y^2+yz\right)+z\left(yz+xz+y^2+xy\right)=0\)

\(\Rightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Rightarrow\hept{\begin{cases}x+y=0\Rightarrow x^3+y^3=0\\y+z=0\Rightarrow y^5+z^5=0\\x+z=0\Rightarrow z^7+x^7=0\end{cases}}\)

\(\Rightarrow A=\left(x^3+y^3\right)\left(y^5+z^5\right)\left(z^7+x^7\right)=0\)