tìm các số tự nhiên x,y,z thõa mãn:
2016x + 2017y = 2018z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018
=> 2016x - 2017y - 2016x + 2018z + 2017y - 2018z = 2018
=> 2016x - 2016x + 2017y - 2017y + 2018z - 2018z = 2018
=> 0x + 0y + 0z = 2018 (vô lí)
Vậy không tìm được các số nguyên x, y, z thỏa mãn đề bài
(2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018
=> 2016x - 2017y - 2016x + 2018z + 2017y -2018z = 2018
=> 2016x - 2016x + 2017y - 2017y + 2018z - 2018z=2018
=> 0x + 0y + 0z=2018(vô lý)
Vậy ko tìm được các số nguyên x,y,z thoả mãn đề bài.
\(\left(2016x-2017y\right)-\left(2016x-2018z\right)+\left(2017y-2018z\right)\)
\(=2016x-2017y-\left(2016x-2018x\right)+2017y-2018z\)
\(=2016x-2016x+2018z-2018z\)
\(=0\)
Vậy \(\left(2016x-2017\right)-\left(2016x-2018z\right)+\left(2017y-2018z\right)\ne2018\)
+, Nếu x = 0 hoặc x = 1 ; y = 0 hoặc y = 1 thay vào 2016x2017 + 2017y2018 = 2019 thì 2016.02017 + 2017.02018 = 4033 ( Loại )
+, Nếu x,y \(\ge\)2 thay vào 2016 . 22017 + 2017 . y 2018 = 2019 ( Vô lí , loại )
Do đó không tồn tại 2 số nguyên x;y thỏa mãn điều kiện bài toán
Vậy không tồn tại ......
Hok tốt
mình xin nhắc nhẹ bạn là nguyên chứ ko phải nguyên dương nên x^2017 có thể âm nhé
Giải : Ta có : 2x + 1 là số lẻ
=> 2|x| + y2 + y là số lẻ
Do y2 + y = y(y + 1) là 2 số tự nhiên liên tiếp => y2 + y là số chẵn
=> 2|x| là số lẻ <=> 2|x| = 1 <=> |x| = 0 <=> x = 0
Với x = 0 => 1 + y2 + y = 2.0 + 1
=> y2 + y + 1 = 1
=> y(y + 1) = 1 - 1
=> y(y + 1) = 0
=> \(\orbr{\begin{cases}y=0\\y+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)
Do x; y \(\in\)N <=> x = y = 0