Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+, Nếu x = 0 hoặc x = 1 ; y = 0 hoặc y = 1 thay vào 2016x2017 + 2017y2018 = 2019 thì 2016.02017 + 2017.02018 = 4033 ( Loại )
+, Nếu x,y \(\ge\)2 thay vào 2016 . 22017 + 2017 . y 2018 = 2019 ( Vô lí , loại )
Do đó không tồn tại 2 số nguyên x;y thỏa mãn điều kiện bài toán
Vậy không tồn tại ......
Hok tốt
mình xin nhắc nhẹ bạn là nguyên chứ ko phải nguyên dương nên x^2017 có thể âm nhé
x^3+y^3+z^3-3xyz = 0
<=> (x+y+z).(x^2+y^2+z^2-xy-yz-zx) = 0
Mà x+y+z > 0 => x^2+y^2+z^2-xy-yz-zx = 0
<=> 2x^2+2y^2+2z^2-2xy-2yz-2zx = 0
<=> (x-y)^2+(y-z)^2+(z-x)^2 = 0
=> x-y=0;y-z=0;z-x=0
=> P = 0
k mk nha
\(2016x^{2017}+2017y^{2016}=2015\left(1\right)\)
Có 2016x2017 là số chẵn, 2015 là số lẻ
=> 2017y2016 là số lẻ => y2016 là số lẻ
Đặt y1008 = 2k+1 \(\left(k\in Z\right)\)
Có y2016 = (2k+1)2 = 4k2+4k+1
=> 2017y2016 = 2017 (4k2+4k+1) = 2017.4.(k2+k)+2017
Lại có: \(2017.4.\left(k^2+k\right)\equiv0\left(mod4\right)\)
\(2017\equiv1\left(mod4\right)\)
suy ra: \(2017y^{2016}\equiv1\left(mod4\right)\)
mà \(2016x^{2017}\equiv0\left(mod4\right)\)
\(\Rightarrow2016x^{2017}+2017y^{2016}\equiv1\left(mod4\right)\left(2\right)\)
Lại có: \(2015\equiv3\left(mod4\right)\left(3\right)\)
Từ (1), (2) và (3) => PT vô nghiệm
Từ gt suy ra \(\frac{2016}{y}+\frac{2017}{x}\le1\).
Áp dụng BĐT Cauchy-Schwarz ta có:
\(x+y\ge\left(x+y\right)\left(\frac{2017}{x}+\frac{2016}{y}\right)\ge\left(\sqrt{2017}+\sqrt{2016}\right)^2\)
a) a là 1 nghiệm \(\Rightarrow\sqrt{2}a^2+a-1=0\Leftrightarrow2a^4=\left(1-a\right)^2=a^2-2a+1\)
\(\Rightarrow2a^4-2a+3=a^2-2a+1-2a+3=\left(a-2\right)^2\)
\(\sqrt{2\left(2a^4-2a+3\right)}+2a^2=\sqrt{2}\left(a-2\right)+2a^2\)(1)
mà \(\sqrt{2}a^2+a-1=0\Rightarrow2a^2+\sqrt{2}a-\sqrt{2}=0\)
(1)= \(2a^2+\sqrt{2}a-2\sqrt{2}=-\sqrt{2}\)
...
b) find nghiệm nguyên dương:
\(Pt\Leftrightarrow x^2+2y^2+2xy-2\left(x+2y\right)+1=0\)
\(\Leftrightarrow x^2+2x\left(y-1\right)+\left(2y^2-4y+1\right)=0\)\(\Delta'=\left(y-1\right)^2-\left(2y^2-4y+1\right)=-y^2+2y\ge0\)
\(\Leftrightarrow0\le y\le2\) kết hợp \(y\in N\)=> ....