K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(3^2)/1.4+(3^2)/4.7+...+(3^2)/97.100

=3.(3/4.7+3/7.10+...+3/97.100)

=3.(1/4-1/7+1/7-1/10+...+1/97-1/100)

=3.(1/4-1/100)

=3.6/25=18/25

25 tháng 4 2015

dấu / là giấu phân số

 

23 tháng 4 2016
Hình như có sai đề~~~
28 tháng 9 2019

Đặt A=1.4+4.7+7.10+...+97.100

9A=1.4.9+4.7.9+7.10.9+...+97.100.9

    =1.4(7+2)+4.7(10-1)+7.10(13-4)+...+97.100(103-94)

    =8+97.100.103

    =999108

\(\Rightarrow\)A=999108:9

\(\Rightarrow\)A=111012

Học tốt nha!!!

2 tháng 10

## Bước 1: Phân tích dãy số

 

Dãy số trên có dạng: 1.4 + 4.7 + 7.10 + ... + 97.100

 

Ta nhận thấy mỗi số hạng trong dãy đều là tích của hai số, số thứ nhất tăng dần theo quy luật cộng 3 (1, 4, 7, ...), số thứ hai tăng dần theo quy luật cộng 3 (4, 7, 10, ...).

 

## Bước 2: Biểu diễn tổng dưới dạng công thức

 

Gọi tổng của dãy số là S. Ta có thể viết lại S dưới dạng công thức:

 

S = 1.4 + 4.7 + 7.10 + ... + 97.100

 

S = (1 x 4) + (4 x 7) + (7 x 10) + ... + (97 x 100)

 

## Bước 3: Tính tổng

 

Để tính tổng S, ta có thể sử dụng phương pháp sau:

 

* **Nhân cả hai vế của S với 3:**

 

3S = 3(1 x 4) + 3(4 x 7) + 3(7 x 10) + ... + 3(97 x 100)

 

3S = (1 x 4 x 3) + (4 x 7 x 3) + (7 x 10 x 3) + ... + (97 x 100 x 3)

 

3S = (1 x 4 x (7 - 1)) + (4 x 7 x (10 - 4)) + (7 x 10 x (13 - 7)) + ... + (97 x 100 x (103 - 97))

 

3S = (1 x 4 x 7 - 1 x 4 x 1) + (4 x 7 x 10 - 4 x 7 x 4) + (7 x 10 x 13 - 7 x 10 x 7) + ... + (97 x 100 x 103 - 97 x 100 x 97)

 

* **Rút gọn:**

 

3S = (1 x 4 x 7) + (4 x 7 x 10) + (7 x 10 x 13) + ... + (97 x 100 x 103) - (1 x 4 x 1) - (4 x 7 x 4) - (7 x 10 x 7) - ... - (97 x 100 x 97)

 

* **Nhận thấy:**

 

Các số hạng trong ngoặc thứ nhất và thứ hai đều triệt tiêu lẫn nhau, chỉ còn lại:

 

3S = 97 x 100 x 103 - 1 x 4 x 1

 

3S = 1000900 - 4

 

3S = 1000896

 

* **Tính S:**

 

S = 1000896 / 3

 

S = 333632

 

## Kết luận:

 

Tổng của dãy số 1.4 + 4.7 + 7.10 + ... + 97.100 là 333632.

 

8 tháng 5 2022

A= 2/1.4+2/4.7+2/7.10+...+2/97.100

= 2.(1/1.4+1/4.7+1/7.10+...+1/97.100)

= 2.(1/1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)

= 2.(1/1-1/100)

= 2.(99/100)

=99/50

8 tháng 5 2022

quá dễ bạn ạ

a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)

\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)

Vậy ta có biểu thức:

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)

Vậy B < 1 (đpcm)

 

 

 

Giải:

a) Ta có:

1/22=1/2.2 < 1/1.2

1/32=1/3.3 < 1/2.3

1/42=1/4.4 < 1/3.4

1/52=1/5.5 < 1/4.5

1/62=1/6.6 < 1/5.6

1/72=1/7.7 < 1/6.7

1/82=1/8.8 <1/7.8

⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8

   B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8

   B<1/1-1/8

   B<7/8

mà 7/8<1

⇒B<7/8<1

⇒B<1

b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46

   S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

   S=1/1-1/46

   S=45/46

Vì 45/46<1 nên S<1

Vậy S<1

Chúc bạn học tốt!

14 tháng 2 2016

Mình mới học lớp 5 , xin lỗi nhé, mình cũng rất muốn giúp bạn nhưng ko đc.

nếu không làm được thì thôi, mong bạn đừng nhắn lời xin lỗi ạ. Không ai như bạn đâu!

4 tháng 5 2017

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}.\left(1-\frac{1}{4}\right)+\frac{2}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{2}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+...+\frac{2}{3}.\left(\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(A=\frac{33}{50}\)

11 tháng 9 2016

Ta có: \(A=\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{97.100}\)

\(=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)

Nhận xét: \(\frac{a}{x.\left(x+a\right)}=\frac{1}{x}-\frac{1}{x+a}\)

Do đó: \(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(=\frac{2}{3}.\left(\frac{100}{100}-\frac{1}{100}\right)\)

\(=\frac{2}{3}.\frac{99}{100}\)

\(=\frac{33}{50}\)

Vậy,\(A=\frac{33}{50}\)

11 tháng 9 2016

\(\text{Ta có: }A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+....+\frac{2}{97.100}\)

\(\Rightarrow\frac{3}{2}A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\)

\(\Rightarrow\frac{3}{2}A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{100}\)

\(\Rightarrow\frac{3}{2}A=1-\frac{1}{100}\)

\(\Rightarrow\frac{3}{2}A=\frac{99}{100}\)

\(\Rightarrow A=\frac{99}{100}:\frac{3}{2}\)

\(A=\frac{99}{100}.\frac{2}{3}=\frac{33}{50}\)

6 tháng 9 2016

A=2/1.4+2/4.7+2/7.10+...+2/97.100

=2/3(3/1.4+3/4.7+3/7.10+...+3/97.100)

=2/3(1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)

=2/3(1-1/100)=33/50

6 tháng 9 2016

\(S=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+......+\frac{2}{97.100}\)

\(\Rightarrow S=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\\ \Rightarrow S=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{100}\right)\\ \Rightarrow S=\frac{2}{3}\left(1-\frac{1}{100}\right)\\ \Rightarrow S=\frac{33}{50}\)

5 tháng 8 2015

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}+\frac{3}{97.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

6 tháng 3 2018

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}+\frac{3}{97.100}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

2 tháng 10 2023

`#3107.101107`

1.

a)

`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`

`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`

`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`

`= 1/3* (1 - 1/103)`

`= 1/3*102/103`

`= 34/103`

b)

`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`

`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`

`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`

`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`

`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`

`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`

`= -1/2 * (1 - 1/101)`

`= -1/2*100/101`

`= -50/101`

2.

`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`

`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`

`= 1-1/100`

`= 99/100`