K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2016

ĐA THỨC CÓ 2 NGHIỆM LÀ\(x_1=1999,x_2=\frac{1}{6}\)

vậy nghiệm nhỏ nhất là \(x=\frac{1}{6}\)

7 tháng 11 2015

6x2-11995x-1999=0

<=> (x-1999,333306)(x+0.1666388819)=0

=> nghiệm lớn nhất của đa thức là 1999,333306

20 tháng 10 2015

ta có /1998-x/ >=0

/1999-x/ >=0

 để ... nhỏ nhất =>/1998-x/=0 =>x=1998

vậy thay x =1998 vào ta có :

/1998-1998/+/1999-1998/=1 (1)

để ... nhỏ nhất =>/1999-x/=0=>x=1999

thay x=1999 vào ta có :

/../+/../=1 (2)

từ (1) và(2)

=>A có giá trị nhỏ nhất =1

chắc giải như vậy cũng được 

 

20 tháng 10 2015

=1

nhé bạn tick đi

4 tháng 7 2017

Ầy khó vc

4 tháng 7 2017

\(g\left(x\right)=x^3-2x^2+x\)

\(x^3-2x^2+x=x\left(x^2-2x+1\right)\)

\(\Rightarrow x\left(x^2+2x+1\right)=x\left(x-1\right)^2\)

\(g\left(x\right)=0\)

Tập nghiệm của g(x) là { 0 ; 1 }

Ta có: x=1999

nên x+1=2020

Ta có: \(f\left(x\right)=x^{17}-2020\cdot x^{16}+2020\cdot x^{15}-2020\cdot x^{14}+...+2000x-1\)

\(=x^{17}-x^{16}\left(x+1\right)+x^{15}\left(x+1\right)-x^{14}\left(x+1\right)+...+x\left(x+1\right)-1\)

\(=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-x^{15}-x^{14}+...+x^2+x-1\)

\(=x-1\)

\(=1999-1=1998\)

20 tháng 3 2021

f(x) = x^17 - 2000x^16 + 2000x^15 - 2000x^14 + ... + 2000x - 1

⇒ f(1999) = 1999^17 - 2000.1999^16 + 2000.1999^15 - 2000.1999^14 + ... + 2000.1999 - 1

⇒ 1999. f(1999) = 1999^18 - 1999.1999^17 + 2000.1999^16 - 2000.1999^15 + ... + 2000.1999^2 - 1999

⇒ 1999. f(1999) + f(1999) =(1999^18 - 1999.1999^17 + 2000.1999^16 - 2000.1999^15 + ... + 2000.1999^2 - 1999) + (1999^17 - 2000.1999^16 + 2000.1999^15 - 2000.1999^14 + ... + 2000.1999 - 1)

⇒ 2000. f(1999) = 19992−1

⇔ f(1999) =1999^2-1/2000(ghi dưới dạng phân số nha)

8 tháng 6 2020

Ta có f(1999) = 19992015 - 2000.19992004 + 2000.19992013 - 2000.19992012 + .... + 2000.1999 - 1

                      = 19992015 - 2000(19992014 - 19992013 + 19992012 - .... - 2000.1999) - 1

         Đặt C = 19992014 - 19992013 + 19992012 - .... - 2000.1999

  Khi đó : f(1999) = 19992015 - 2000C - 1

Ta có : C = 19992014 - 19992013 + 19992012 - .... - 2000.1999

=> 1999C = 19992015 - 19992014 + 19992013 - .... - 2000.19992

Lấy 1999C cộng C theo vế ta có : 

1999C + C = (19992015 - 19992014 + 19992013 - .... - 2000.19992) + (19992014 - 19992013 + 19992012 - .... - 2000.1999)

      2000C = 19992015 - 2000.1999

=> f(1999) = 19992015 - 19992015 +  2000.1999 - 1 = 2000.1999 + 1

    

11 tháng 10 2017

Ta có: \(A=\left|x-1999\right|+\left|x-9\right|=\left|1999-x\right|+\left|x-9\right|\ge\left|1999-x+x-9\right|=1990\)

Dấu "=" xảy ra khi \(\left(1999-x\right)\left(x-9\right)\ge0\Leftrightarrow9\le x\le1999\)

Vậy MinA = 1990 khi \(9\le x\le1999\)

2 tháng 1 2022

\(A=x^2+6x=\left(x^2+6x+9\right)-9=\left(x+3\right)^2-9\ge-9\)

dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy \(A_{min}=-9\Leftrightarrow x=-3\)