*Tính 3/2*5 +3/5*8 +3/8*11 +...+3/17*20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(=\)\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{10}{20}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Tk giúp !!
\(a=\frac{5-2}{2x5}+\frac{8-5}{5x8}+\frac{11-8}{8x11}+...+\frac{20-17}{17x20}\)
\(a=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
1) \(\left(+15\right)+\left(+17\right)=15+17=32\)
2) \(\left(-3\right)+\left(-7\right)=-3-7=-\left(3+7\right)=-10\)
3) \(\left(-25\right)+\left(+4\right)=-25+4=-\left(25-4\right)=-21\)
4) \(\left(-6\right)+\left(-54\right)=-6-54=-\left(6+54\right)=-60\)
5) \(\left(-15\right)+20=20-15=5\)
6) \(\left(-5\right)+8+7+5\)
\(=\left(-5+5\right)+\left(8+7\right)\)
\(=15\)
7) \(\left(-8\right)+\left(-11\right)+\left(-2\right)\)
\(=\left[\left(-8\right)+\left(-2\right)\right]+\left(-11\right)\)
\(=\left(-10\right)+\left(-11\right)\)
\(=-21\)
8) \(15+\left(-5\right)+\left(-14\right)+\left(-16\right)\)
\(=\left[15+\left(-5\right)\right]+\left[\left(-14\right)+\left(-16\right)\right]\)
\(=10+\left(-30\right)\)
\(=-20\)
9) \(\left(-20\right)+\left(-14\right)+3+\left(-86\right)\)
\(=\left[\left(-20\right)+3\right]+\left[\left(-14\right)+\left(-86\right)\right]\)
\(=\left(-17\right)+\left(-100\right)\)
\(=-117\)
10) \(\left(-136\right)+123+\left(-264\right)+\left(-83\right)+240\)
\(=\left[\left(-136\right)+\left(-264\right)\right]+\left[123+\left(-83\right)\right]+240\)
\(=\left(-400\right)+40+240\)
\(=\left(-360\right)+240\)
\(=-120\)
11) \(\left(-596\right)+2001+1999+\left(-404+189\right)\)
\(=\left(-596\right)+2001+1999-404+189\)
\(=\left[\left(-596\right)-404\right]+\left(2001+189\right)+1999\)
\(=\left(-1000\right)+2190+1999\)
\(=1190+1999\)
\(=3189\)
12) \(314+\left(-153\right)+64+121+\left(-247\right)+218\)
\(=\left(314+64+121\right)+\left[\left(-153\right)+\left(-247\right)\right]+218\)
\(=\left(378+121\right)+\left(-400\right)+218\)
\(=499-400+218\)
\(=99+218\)
\(=317\)
\(\text{#}Toru\)
b: \(27D=3^{14}+3^{17}+...+3^{2024}\)
\(\Leftrightarrow26D=3^{2024}-3^{11}\)
hay \(D=\dfrac{3^{2024}-3^{11}}{26}\)
c: \(25E=-5^4-5^6-...-5^{1002}\)
\(\Leftrightarrow24E=-5^{1002}+5^2\)
hay \(E=\dfrac{-5^{1002}+5^2}{24}\)
a) Đặt \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}< \frac{1}{2}\)
Vậy A<\(\frac{1}{2}\).
b) Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B< 1-\frac{1}{100}< 1\)
Vậy \(B< 1\).