K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2016

Số hữu tỉ là số viết được dưới dạng phân số \(\frac{a}{b}\) với a,b thuộc Z, b khác 0

5 tháng 6 2016

Số hưu tỉ chính là phân số

14 tháng 7 2019

Đáp án: B. Là các chất lạ vào cơ thể, có tác dụng kích thích cơ thể sinh kháng thể

Giải thích: Kháng nguyên là các chất lạ vào cơ thể, có tác dụng kích thích cơ thể sinh kháng thể - Thông tin bổ sung – SGK trang 115

19 tháng 2 2018

Đáp án: B. Là các chất lạ vào cơ thể, có tác dụng kích thích cơ thể sinh kháng thể.

Giải thích: Kháng nguyên là các chất lạ vào cơ thể, có tác dụng kích thích cơ thể sinh kháng thể - Thông tin bổ sung – SGK trang 115

13 tháng 11 2021

A

Ta có thể cộng, trừ hai số hữu tỉ x,y bằng cách viết chúng dưới dạng hai phân số có cùng một mẫu dương rồi áp dụng quy tắc cộng, trừ phân số. Phép cộng số hữu tỉ có các tính chất của phép cộng phân số : giao hoán, kết hợp, cộng với số 0. Mỗi số hữu tỉ đều có một số đối.

Với \(x=\frac{a}{m},y=\frac{b}{m}\left(a,b,m\in Z,m>0\right),\), ta có:

\(x+y=\frac{a}{m}+\frac{b}{m}=\frac{a+b}{m}\)

\(x-y=\frac{a}{m}-\frac{b}{m}=\frac{a-b}{m}\)

21 tháng 7 2018

Định nghĩa số hữu tỉ

Số hữu tỉ là số viết được dưới dạng phân số ab với a, b ϵZ và b≠0

Kí hiệu

Tập hợp các số hữu tỉ được kí hiệu là Q

Cách viết

Số hữu tỉ bao gồm số thập phân hữu hạn, số thập phân vô hạn tuần hoàn, tập hợp số nguyên. Bởi vậy, một số hữu tỉ có thể viết ở nhiều dạng: số thập phân, phân số. Đặc biệt với số hữu tỉ âm, có thể có 3 cách viết
VD: Nêu ba cách viết của số hữu tỉ -3/5?

  • Dạng phân số có thể viết: -3/5; 3/-5
  • Dạng số thập phân: -0,6

Thế nào là số hữu tỉ dương? số hữu tỉ âm?

  • Số hữu tỉ lớn hơn 0 là số hữu tỉ dương
  • Số hữu tỉ nhỏ hơn 0 là số hữu tỉ âm
  • Số 0 không là số hữu tỉ dương cũng không là số hữu tỉ âm.

So sánh hai số hữu tỉ

Với hai số hữu tỉ x, y ta luôn có: x = y hoặc x > y hoặc x < y

Phương pháp so sánh hai số hữu tỉ x, y:

  • Bước 1: Chuyển hai số hữu tỉ x, y thành hai phân số.
  • Bước 2: So sánh hai phân số.

Ví dụ: So sánh hai số hữu tỉ sau x=2−7 và y=−311
Ta có: x=2−7=−2277
y=−311=−2177
Vì –22<–21⇒x<y⇒2−7<−311

>> Xem thêm: Các phép toán với số hữu tỉ – cộng, trừ, nhân, chia số hữu tỉ như thế nào?

Số vô tỉ

Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn.

Ký hiệu: Tập hợp các số vô tỉ được kí hiệu là I

Ví dụ luyện tập

Ví dụ 1: Trong các phân số sau, phân số nào biểu diễn số hữu tỉ: 3−4, −1215, −1520, 24−32, −2028, −2736

Giải:
Ta có: −1520=−15÷520÷5=−34
24−32=24÷8−32÷8=3−4
27−36=27÷9−36÷9=3−4
−1215=−35 ; −2028=−57
Vậy những phân số biểu diễn −34 là −1520; 24−32; −2736

Ví dụ 2: So sánh các số hữu tỉ ab với a, b thuộc Z, b≠0. Với số 0 khi a, b cùng dấu và khi a, b khác dấu.
Giải: Ta có: ab=a.1b
Khi a, b cùng dấu:
Nếu a>0 và b>0 suy ra: 1b>0
Nên: a.1b>0 vậy ab>0
Nếu a < 0 và b < 0 suy ra: 1b<0
Nên: a.1b>0 vậy ab>0
Khi a, b khác dấu:
Nếu a > 0 và b < 0 suy ra: 1b<0
Nên: a.1b<0 vậy ab<0
Nếu a < 0 và b > 0 suy ra: 1b>0
Nên: a.1b<0 vậy  ab<0

Ví dụ 3: Giả sử x=am và y=bm (a,b,mϵZ,m≠0) và x < y. Hãy chứng tỏ rằng nếu chọn z=a+b2m thì ta có x < z < y.
Giải: 
Ta có: x < y hay am<bm  => a < b
So sánh x, y, z ta chuyển chúng cùng mẫu: 2m
x=am=2a2m và y=bm=2b2m và z=a+b2m
Mà: a<b suy ra: a+a<b+ahay 2a < a + b suy ra x<z (1)
Với: a<b suy ra: a+b<b+b
hay a+b<2b suy ra z<y (2)
Từ (1) và (2), kết luận: x<z<y

Định nghĩa số hữu tỉ

Số hữu tỉ là số viết được dưới dạng phân số ab với a, b ϵZ và b≠0

Kí hiệu

Tập hợp các số hữu tỉ được kí hiệu là Q

Cách viết

Số hữu tỉ bao gồm số thập phân hữu hạn, số thập phân vô hạn tuần hoàn, tập hợp số nguyên. Bởi vậy, một số hữu tỉ có thể viết ở nhiều dạng: số thập phân, phân số. Đặc biệt với số hữu tỉ âm, có thể có 3 cách viết
VD: Nêu ba cách viết của số hữu tỉ -3/5?

  • Dạng phân số có thể viết: -3/5; 3/-5
  • Dạng số thập phân: -0,6

Thế nào là số hữu tỉ dương? số hữu tỉ âm?

  • Số hữu tỉ lớn hơn 0 là số hữu tỉ dương
  • Số hữu tỉ nhỏ hơn 0 là số hữu tỉ âm
  • Số 0 không là số hữu tỉ dương cũng không là số hữu tỉ âm.

So sánh hai số hữu tỉ

Với hai số hữu tỉ x, y ta luôn có: x = y hoặc x > y hoặc x < y

Phương pháp so sánh hai số hữu tỉ x, y:

  • Bước 1: Chuyển hai số hữu tỉ x, y thành hai phân số.
  • Bước 2: So sánh hai phân số.

Ví dụ: So sánh hai số hữu tỉ sau x=2−7 và y=−311
Ta có: x=2−7=−2277
y=−311=−2177
Vì –22<–21⇒x<y⇒2−7<−311

>> Xem thêm: Các phép toán với số hữu tỉ – cộng, trừ, nhân, chia số hữu tỉ như thế nào?

Số vô tỉ

Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn.

Ký hiệu: Tập hợp các số vô tỉ được kí hiệu là I

Ví dụ luyện tập

Ví dụ 1: Trong các phân số sau, phân số nào biểu diễn số hữu tỉ: 3−4, −1215, −1520, 24−32, −2028, −2736

Giải:
Ta có: −1520=−15÷520÷5=−34
24−32=24÷8−32÷8=3−4
27−36=27÷9−36÷9=3−4
−1215=−35 ; −2028=−57
Vậy những phân số biểu diễn −34 là −1520; 24−32; −2736

Ví dụ 2: So sánh các số hữu tỉ ab với a, b thuộc Z, b≠0. Với số 0 khi a, b cùng dấu và khi a, b khác dấu.
Giải: Ta có: ab=a.1b
Khi a, b cùng dấu:
Nếu a>0 và b>0 suy ra: 1b>0
Nên: a.1b>0 vậy ab>0
Nếu a < 0 và b < 0 suy ra: 1b<0
Nên: a.1b>0 vậy ab>0
Khi a, b khác dấu:
Nếu a > 0 và b < 0 suy ra: 1b<0
Nên: a.1b<0 vậy ab<0
Nếu a < 0 và b > 0 suy ra: 1b>0
Nên: a.1b<0 vậy  ab<0

Ví dụ 3: Giả sử x=am và y=bm (a,b,mϵZ,m≠0) và x < y. Hãy chứng tỏ rằng nếu chọn z=a+b2m thì ta có x < z < y.
Giải: 
Ta có: x < y hay am<bm  => a < b
So sánh x, y, z ta chuyển chúng cùng mẫu: 2m
x=am=2a2m và y=bm=2b2m và z=a+b2m
Mà: a<b suy ra: a+a<b+ahay 2a < a + b suy ra x<z (1)
Với: a<b suy ra: a+b<b+b
hay a+b<2b suy ra z<y (2)
Từ (1) và (2), kết luận: x<z<y

4 tháng 7 2016

Một cách tổng quát:

1.Số hữu tỉ là số viết được dưới dạng phân số \(\frac{a}{b}\)với a,b là số nguyên và b khác 0.Tập hợp các số hữu tỉ được kí hiệu là Q.

2.Ta có thể biểu diễn mọi số hữu tỉ trên trục số.Trên trục số, điểm biểu diễn số hữu tỉ x được gọi là điểm x.

3.Ta có thể so sánh 2 số hữu tỉ bằng cách viết chúng dưới dạng phân số rồi so sánh 2 phân số đó.Nếu x<y thì điểm xở bên trái điểm y.

4.Số hữu tỉ lớn hơn 0 gọi là số hữu tỉ dương.

  Số hữu tỉ nhỏ hơn 0 gọi là số hữu tỉ âm.

  Số hữu tỉ 0 không là số hữu tỉ dương, cũng không là số hữu tỉ âm

1. Thế nào là số hữu tỉ, số hữu tỉ dương, số hữu tỉ âm? Cho ví dụ.          2. Thế nào là số vô tỉ? Thế nào là số thực? Cho ví dụ.          3. Giá trị tuyệt đối của một số hữu tỉ x được xác định như thế nào?          4. Căn bậc hai của một số không âm a là gì? Cho ví dụ?          5. Tỉ lệ thức là gì? Nêu tính chất cơ bản của tỉ lệ thức. Viết công thức thể hiện tính chất của dãy tỉ số...
Đọc tiếp

1. Thế nào là số hữu tỉ, số hữu tỉ dương, số hữu tỉ âm? Cho ví dụ.

          2. Thế nào là số vô tỉ? Thế nào là số thực? Cho ví dụ.

          3. Giá trị tuyệt đối của một số hữu tỉ x được xác định như thế nào?

          4. Căn bậc hai của một số không âm a là gì? Cho ví dụ?

          5. Tỉ lệ thức là gì? Nêu tính chất cơ bản của tỉ lệ thức. Viết công thức thể hiện tính chất của dãy tỉ số bằng nhau?

          6. Khi nào thì hai đại lượng x và y tỉ lệ thuận, tỉ lệ nghịch với nhau? Cho ví dụ?

          7. Đồ thị của hàm số y = ax (a  0) có dạng như thế nào?

          8. Tần số của một giá trị là gì? Mốt của dấu hiệu là gì? Nêu công thức tính số trung bình cộng của dấu hiệu.

          9. Thế nào là đơn thức, đơn thức đồng dạng, đa thức? Cho ví dụ.

          10. Khi nào số a được gọi là nghiệm của đa thức P(x)?

1

10: a được gọi là nghiệm của P(x) khi P(a)=0

7:

Có dạng là một đường thẳng đi qua gốc tọa độ

25 tháng 12 2015

Số hữu tỉ: Tập hợp các số có thể viết được dưới dạng phân số (số thập phân hữu hạn và số thập phân vô hạn tuần hoàn)bao gồm luôn tập hợp số nguyên. Tập hợp số hữu tỉ kí hiệu là Q. 

25 tháng 12 2015

Số hữu tỉ: Tập hợp các số có thể viết được dưới dạng phân số (số thập phân hữu hạn và số thập phân vô hạn tuần hoàn)bao gồm luôn tập hợp số nguyên. Tập hợp số hữu tỉ kí hiệu là Q. 

23 tháng 6 2016

Q=\(\left\{\frac{a}{b};b\ne0\right\}\)

23 tháng 9 2017

Đáp án D