K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2022

Đáp án:

 xin câu trả lời hay nhất nhá

Giải thích các bước giải:

1≠01≠0  ⇔ 1≠01≠0  

ΔΔ > 0      ⇔ m>6m>6

S > 0          ⇔ m>0m>0

P > 0          ⇔ m>−3

19 tháng 11 2021

 Để phương trình x squared minus m x plus m plus 3 equals 0 có 2 nghiệm dương phân biệt thì:

Hỏi đáp VietJack

11 tháng 3 2021

Để pt có 2 nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}\Delta=m^2-4\left(m+3\right)>0\\m>0\\m+3>0\end{matrix}\right.\Leftrightarrow m>6\).

4 tháng 5 2018

Đáp án A

 

Ghi nhớ: Nếu hàm số

liên tục trên đoạn thì phương trình

có ít nhất một nghiệm nằm trong khoảng .

x1^2+x2^2=(x1+x2)^2-2x1x2

=m^2-2(m-1)=m^2-2m+2

=>x1^2=m^2-2m+2-x2^2

x1^2+3x2=19

=>m^2-2m+2-x2^2+3x2=19

=>-x2^2+3x2+m^2-2m-17=0

=>x2^2-3x2-m^2+2m+17=0(1)

Để (1) có nghiệm thì Δ1>0

=>(-3)^2-4*1*(-m^2+2m+17)>0

=>9-4(-m^2+2m+17)>0

=>9+4m^2-8m-68>0

=>4m^2-8m-59>0

=>\(\left[{}\begin{matrix}m< \dfrac{2-3\sqrt{7}}{2}\\m>\dfrac{2+3\sqrt{7}}{2}\end{matrix}\right.\)

Trường hợp 1: m=0

Phương trình sẽ là:

\(0x^2-2\cdot\left(0-1\right)x+0-3=0\)

=>2x-3=0

hay x=3/2

=>Phương trình có đúng một nghiệm dương, còn hai trường hợp còn lại thì ko đúng

Trường hợp 2: m<>0

a: 

Để phương trình có hai nghiệm trái dấu thì m(m-3)<0

hay 0<m<3

b:\(\Delta=\left(2m-2\right)^2-4m\left(m-3\right)\)

\(=4m^2-8m+4-4m^2+12m\)

=4m+4

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m>-1\\\dfrac{2\left(m-1\right)}{m}>0\\\dfrac{m-3}{m}>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1< m< 0\\m>3\end{matrix}\right.\)

23 tháng 7 2021

còn cái nịt

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>m2-4>0

=>m>2 hoặc m<-2

16 tháng 2 2021

a, Ta có : \(mx^3-x^2+2x-8m=0\)

\(\Leftrightarrow m\left(x^3-8\right)-\left(x^2-2x\right)=0\)

\(\Leftrightarrow m\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(mx^2+2mx+4m-x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(mx^2+x\left(2m-1\right)+4m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\mx^2+x\left(2m-1\right)+4m=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\mx^2+x\left(2m-1\right)+4m=0\left(I\right)\end{matrix}\right.\)

- Để phương trình ban đầu có 3 nghiệm phân biệt lớn hơn 1

<=> Phương trình ( I ) có 2 nghiệm phân biệt lớn hơn 1 .

- Xét phương trình ( I ) có : \(\Delta=b^2-4ac=\left(2m-1\right)^2-4m.4m\)

\(=4m^2-4m+1-16m^2=-12m^2-4m+1\)

- Để phương trình ( I ) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow-\dfrac{1}{2}< m< \dfrac{1}{6}\) ( * )

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{m}\\x_1x_2=4\end{matrix}\right.\)

- Để phương trình ( I ) có nghiệm lớn hơn 1 \(\Leftrightarrow\left\{{}\begin{matrix}x_1-1+x_2-1>0\\\left(x_1-1\right)\left(x_2-1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\5-\dfrac{1-2m}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\\dfrac{7m-1}{m}>0\end{matrix}\right.\)

- Lập bảng xét dấu ( đoạn này làm tắt tí nha :vv )

Từ bảng xét dấu ta được : \(\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>\dfrac{1}{7}\end{matrix}\right.\\0< m< \dfrac{1}{4}\end{matrix}\right.\)

- Kết hợp điều kiện ( * ) ta được :\(\dfrac{1}{7}< m< \dfrac{1}{6}\)

Vậy ...

 

 

 

 

16 tháng 2 2021

b, - Xét phương trình trên có : \(\Delta^,=b^{,2}-ac=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)\)

\(=m^2-4m+4-m^2+m+3m-3=1>0\)

Nên phương trình có 2 nghiệm phân biệt .

Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\)

- Để \(x_1+x_2+x_1x_2< 1\)

\(\Leftrightarrow\dfrac{2\left(m-2\right)+\left(m-3\right)-\left(m-1\right)}{m-1}< 0\)

\(\Leftrightarrow\dfrac{2m-6}{m-1}< 0\)

- Đặt \(\dfrac{2m-6}{m-1}=f\left(m\right)\)

Cho f(m) = 0 => m = 3

m-1 = 0 => m = 1

- Lập bảng xét dầu :

m.............................1..........................................3...................................

2m-6............-..........|......................-.....................0...................+.................

m-1..............-............0...................+.....................|....................+.................

f(m).............+...........||..................-........................0................+....................

- Từ bảng xét dầu ta được : Để \(f\left(m\right)< 0\)

\(\Leftrightarrow1< m< 3\)

Vậy ...

 

17 tháng 3 2019

Chú ý:

Câu này có thể thử bằng máy tính bằng cách lần lượt thay các giá trị của m vào phương trình và tìm nghiệm của phương trình bậc hai tương ứng.

Thay m=7, phương trình vô nghiệm, loại A.

Thay m=-2, phương trình có một nghiệm âm, loại B, D.

Chọn C.