cho D=3/20+3/21+3/22+......+3/200 chứng tỏ rằng D>27/10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=2^0+2^1+2^2+...+2^7\)
\(\Rightarrow S=\left(2^0+2^1\right)+2^2\left(2^0+2^1\right)+...+2^6\left(2^0+2^1\right)\)
\(\Rightarrow S=3+2^2.3+...+2^6.3\)
\(\Rightarrow S=3\left(1+2^2+...+2^6\right)⋮3\)
\(\Rightarrow dpcm\)
a) P = 1 + 3 + 3² + ... + 3¹⁰¹
= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)
= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3⁹⁹.13
= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13
Vậy P ⋮ 13
b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰
= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)
= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)
= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21
= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21
Vậy B ⋮ 21
c) A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁶.30
= 30.(1 + 2⁴ + ... + 2¹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5
Vậy A ⋮ 5
d) A = 1 + 4 + 4² + ... + 4⁹⁸
= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)
= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)
= 21 + 4³.21 + ... + 4⁹⁷.21
= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21
Vậy A ⋮ 21
e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1
= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)
= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105
= 11⁵.16105 + 16105
= 16105.(11⁵ + 1)
= 5.3221.(11⁵ + 1) ⋮ 5
Vậy A ⋮ 5
#)Giải :
Câu 1 :
Đặt \(A=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}\)
\(\Rightarrow A>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}\)( 8 số hạng )
\(\Rightarrow A>\frac{8}{27}=\frac{8}{27}\)
\(\Rightarrow A>\frac{8}{27}\)
#~Will~be~Pens~#
Câu 1:(trội)
Ta có:\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}=\frac{8}{27}\left(đpcm\right)\)
Câu 2:\(D=\frac{2^{25}.3^{15}+3^{15}.5.2^{26}}{2^{25}.3^{17}+3^{15}.2^{25}}=\frac{2^{25}3^{15}\left(1+5.2\right)}{2^{25}3^{15}\left(3^2+1\right)}=\frac{11}{10}\)
Đặt \(B=\frac{1}{20}+\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}< C=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+....+\frac{1}{200}\)
Số các phân số \(\frac{1}{200}\)có trong \(B\)là :
( 200 - 21 ) :1 + 1 = 180 ( phân số )
Nên \(B=\frac{1}{20}+180.\frac{1}{200}=\frac{1}{20}+\frac{9}{10}>\frac{9}{10}\)
Do đó , \(C>B>\frac{9}{10}\)nên \(C>\frac{9}{10}\)
Vậy \(C>\frac{9}{10}\left(ĐPCM\right)\)
Câu 2:
\(C=3^{10}+3^{11}+3^{12}+...+3^{17}.\)
\(C=\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+3^{15}+3^{16}+3^{17}\right).\)
\(C=3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right).\)
\(C=3^{10}\left(1+3+9+27\right)+3^{14}\left(1+3+9+27\right).\)
\(C=3^{10}.40+3^{14}.40.\)
\(C=\left(3^{10}+3^{14}\right).40⋮40\left(đpcm\right).\)
\(C=3^{10}+3^{11}+..+3^{17}\\ =\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+..+3^{17}\right)\\ =3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right)\\ =40\left(3^{10}+3^{14}\right)⋮40\)
\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)
À bài này cx dễ thôi bn, bn chập 2 cái đầu dây nối vs ampe kế lại vs nhau, sau đó phân tích mđ=> tìm I1 và I2
Nếu I1>I2=> dòng điện đi xuống=> IA= I1-I2
Nếu I1<I2 thì ngược lại
Thế thui :))