Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\frac{9.5^{20}.27^9-3.9^{15}.25^9}{7.3^{29}.125^6-3.3^9.15^{19}}\)
\(=\frac{5^{20}.3^{29}-3^{31}.5^{18}}{7.3^{29}.5^{18}-3^{29}.5^{19}}=\frac{3^{29}.5^{18}.\left(25-9\right)}{3^{29}.5^{18}.\left(7-5\right)}=\frac{16}{2}=8\)
CÁC BÀI CÒN LẠI TƯƠNG TỰ HẾT NHÉ E
\(=\frac{2^{18}.2^7.3^{14}.3^3+3^{15}.2^{15}}{2^{10}.2^{15}.3^{15}+3^{14}.3.5.2^{26}}=\frac{2^{25}.3^{17}+3^{15}.2^{15}}{2^{25}.3^{15}+3^{15}.2^{26}.5}=\frac{2^{15}.3^{15}\left(2^{10}.3^2+1\right)}{2^{25}.3^{15}\left(1+2.5\right)}\)
\(=\frac{2^{10}.3^2+1}{2^{10}\left(1+2.5\right)}=\frac{2^{10}.3^2+1}{11.2^{10}}\)
a)\(\frac{-5}{13}+\left(\frac{3}{5}+\frac{3}{13}-\frac{4}{10}\right)=\frac{-5}{13}-\frac{3}{5}-\frac{3}{13}+\frac{4}{10}=\left(\frac{-5}{13}-\frac{3}{13}\right)+\frac{4}{10}-\frac{3}{5}=\frac{-5-3}{13}+\left(\frac{4}{10}-\frac{6}{10}\right)=\frac{-8}{13}+\frac{-2}{10}=\frac{-80}{130}+\frac{-26}{130}=\frac{-106}{130}=\frac{-53}{65}\)
Ta có:
\(A=\frac{2^{18}.18^7.3^3+3^{15}.2^{15}}{2^{10}.6^{15}+3^{14}.15.4^{13}}=\frac{2^{18}.\left(2.3^2\right)^7.3^3+3^{15}.2^{15}}{2^{10}.\left(2.3\right)^{15}+3^{14}.3.5.\left(2^2\right)^{13}}\)
\(=\frac{2^{18}.2^7.3^{14}.3^3+3^{15}.2^{15}}{2^{10}.2^{15}.3^{15}+3^{15}.5.2^{16}}=\frac{2^{25}.3^{17}+2^{15}.3^{15}}{2^{25}.3^{15}+3^{15}.2^{16}.5}=\frac{2^{15}.3^{15}.\left(3^2.2^{10}+1\right)}{2^{16}.3^{15}.\left(2^9+5\right)}\)
\(=\frac{3^2.2^{10}+1}{2^{10}+10}=\frac{9.1024+1}{1024+10}=\frac{9217}{1025}\)
A) \(\frac{2}{3}+\frac{1}{5}-\frac{10}{7}=\frac{13}{15}-\frac{10}{7}=\frac{-59}{105}\)
B) \(\frac{7}{12}-\frac{27}{18}.\frac{2}{18}=\frac{7}{12}-\frac{3}{2}.\frac{2}{18}=\frac{7}{12}-\frac{1}{6}=\frac{5}{12}\)
C) \(\left(\frac{23}{41}-\frac{15}{82}\right).\frac{41}{25}=\frac{31}{82}.\frac{41}{25}=\frac{31}{50}\)
D) \(\left(\frac{4}{5}+\frac{1}{2}\right).\left(\frac{3}{13}-\frac{8}{13}\right)=\frac{13}{10}.\frac{-5}{13}=\frac{-1}{2}\)
a, = \(\frac{-59}{105}\)
b = \(\frac{7}{144}\)
c= \(\frac{31}{50}\)
d=\(\frac{-1}{2}\)
#)Giải :
Câu 1 :
Đặt \(A=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}\)
\(\Rightarrow A>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}\)( 8 số hạng )
\(\Rightarrow A>\frac{8}{27}=\frac{8}{27}\)
\(\Rightarrow A>\frac{8}{27}\)
#~Will~be~Pens~#
Câu 1:(trội)
Ta có:\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}=\frac{8}{27}\left(đpcm\right)\)
Câu 2:\(D=\frac{2^{25}.3^{15}+3^{15}.5.2^{26}}{2^{25}.3^{17}+3^{15}.2^{25}}=\frac{2^{25}3^{15}\left(1+5.2\right)}{2^{25}3^{15}\left(3^2+1\right)}=\frac{11}{10}\)