K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

Ta có : \(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+3\right)=\left(-2m-2\right)^2-4\left(m^2+3\right)\)

\(=\left(2m+2\right)^2-4\left(m^2+3\right)=4m^2+8m+4-4m^2-12=8m-8\)

Để phương trình có nghiệm \(8m-8>0\Leftrightarrow m< 1\)

\(8m-8=0\Leftrightarrow m=1\)

Theo Vi et ta có \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{2m+2}{1}=2m+2\\x_1x_1=\frac{c}{a}=m^2+3\end{cases}}\)

\(P=2m+2+m^2+3=m^2+2m+5\)

\(=m^2+2m+1+4=\left(m+1\right)^2+4\ge4\)

Dấu ''='' xảy ra <=> m = -1 

Vậy GTNN P là 4 <=> m =-1 

Để phương trình 1 có nghiệm \(=>\Delta\ge0\)

\(\Delta=4.\left(m+1\right)^2-4.\left(m^2+3\right)=4m^2+8m+4-4m^2-12=8m-8\ge0=>m\ge1\)

21 tháng 4 2022

a) Xét pt đã cho có \(a=m^2+m+1\)\(b=-\left(m^2+2m+2\right)\)\(c=-1\)

Nhận thấy rằng \(ac=\left(m^2+m+1\right)\left(-1\right)=-\left(m^2+m+1\right)\)

\(=-\left(m^2+2m.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)=-\left(m+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)

Vì \(-\left(m+\dfrac{1}{2}\right)^2\le0\) và \(-\dfrac{3}{4}< 0\) nên \(-\left(m+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\) hay \(ac< 0\). Vậy pt đã cho luôn có 2 nghiệm trái dấu.

b) Theo câu a, ta đã chứng minh được pt đã cho luôn có 2 nghiệm trái dấu \(x_1,x_2\).

Áp dụng hệ thức Vi-ét, ta có \(S=x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m^2+2m+2\right)}{m^2+m+1}=\dfrac{m^2+2m+2}{m^2+m+1}\)

Nhận thấy \(m^2+m+1\ne0\) nên ta có:

\(\left(m^2+m+1\right)S=m^2+2m+2\) \(\Leftrightarrow Sm^2+Sm+S-m^2-2m-2=0\)\(\Leftrightarrow\left(S-1\right)m^2+\left(S-2\right)m+\left(S-2\right)=0\)(*)

pt (*) có \(\Delta=\left(S-2\right)^2-4\left(S-1\right)\left(S-2\right)\)\(=S^2-4S+4-4\left(S^2-3S+2\right)\)\(=S^2-4S+4-4S^2+12S-8\)\(=-3S^2+8S-4\)

Để pt (*) có nghiệm thì \(\Delta\ge0\) hay \(-3S^2+8S-4\ge0\)\(\Leftrightarrow-3S^2+6S+2S-4\ge0\)\(\Leftrightarrow-3S\left(S-2\right)+2\left(S-2\right)\ge0\) \(\Leftrightarrow\left(S-2\right)\left(2-3S\right)\ge0\)

Ta xét 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}S-2\ge0\\2-3S\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S\ge2\\S\le\dfrac{2}{3}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}S-2\le0\\2-3S\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S\le2\\S\ge\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\dfrac{2}{3}\le S\le2\) (nhận)

Khi \(S=\dfrac{2}{3}\) thì (*) \(\Leftrightarrow\left(\dfrac{2}{3}-1\right)m^2+\left(\dfrac{2}{3}-2\right)m+\dfrac{2}{3}-2=0\)\(\Leftrightarrow-\dfrac{1}{3}m^2-\dfrac{4}{3}m-\dfrac{4}{3}=0\)\(\Leftrightarrow m^2+4m+4=0\)

\(\Leftrightarrow\left(m+2\right)^2=0\) \(\Leftrightarrow m+2=0\) \(\Leftrightarrow m=-2\)

Khi \(S=2\) thì (*) \(\Leftrightarrow\left(2-1\right)m^2+\left(2-2\right)m+2-2=0\)\(\Leftrightarrow m^2=0\)

  \(\Leftrightarrow m=0\)

Vậy GTNN của S là \(\dfrac{2}{3}\) khi \(m=-2\) và GTLN của S là \(2\) khi \(m=0\)

 

12 tháng 11 2018

Đáp án D

a: Δ=(2m-1)^2-4*(-m)

=4m^2-4m+1+4m=4m^2+1>0

=>Phương trình luôn có nghiệm

b: \(A=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)

\(=\left(2m-1\right)^2-3\left(-m\right)\)

=4m^2-4m+1+3m

=4m^2-m+1

=4(m^2-1/4m+1/4)

=4(m^2-2*m*1/8+1/64+15/64)

=4(m-1/8)^2+15/16>=15/16

Dấu = xảy ra khi m=1/8

8 tháng 7 2023

a) Phương trình có hai nghiệm phân biệt khi: 

\(\Delta=9-4\left(m+1\right)>0\)  \(\Leftrightarrow m< \dfrac{5}{4}\)

Vậy \(\ m< \dfrac{5}{4}\) thì pt có hai nghiệm phân biệt.

b) Áp dụng hệ thức viet có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m+1\end{matrix}\right.\)

\(P=\left(x_1+x_2\right)^2-4x_1.x_2+7m+5.x_1x_2\)

\(=9-4\left(m+1\right)+7m+5\left(m+1\right)\)

\(=8m+10\)

Không tồn tại giá trị lớn nhất. Em xem lại đề

12 tháng 7 2023

Trên đó em ko hề có ghi là tìm m để pt có 2 nghiệm phân biệt. Vậy nên phải là m \(\le\dfrac{5}{4}\). KQ: Giá trị lớn nhất của P = 20 khi m = \(\dfrac{5}{4}\)

9 tháng 2 2023

a)

\(x=-2\) là nghiệm của phương trình

\(\Rightarrow\left(-2\right)^2-\left(-2\right).\left(m-1\right).\left(-2\right)-3=0\)

\(\Leftrightarrow4+4\left(m-1\right)-3=0\)

\(\Leftrightarrow4\left(m-1\right)=-1\)

\(\Leftrightarrow m-1=-\dfrac{1}{4}\)

\(\Leftrightarrow m=\dfrac{3}{4}\)

\(x^2-2\left(m-1\right)x-3=0\)

\(\Leftrightarrow x^2+\dfrac{1}{2}x-3=0\)

\(\Leftrightarrow2x^2+x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

b)

\(\Delta'=\left(m-1\right)^2+12x>0\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3\end{matrix}\right.\)

Có:

 \(Q=x_1^3x_2+x_1x_2^3-5x_1x_2\)

\(=x_1x_2.\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\)

\(=-3\left[4\left(m-1\right)^2+6\right]+15\)

\(=-12\left(m-1\right)^2-3\)

Mà \(-12\left(m-1\right)^2\le0\)

\(\Rightarrow-12\left(m-1\right)^2-3\le-3\)

\(Max_Q=-3\Leftrightarrow m-1=0\Leftrightarrow m=1\).

 

9 tháng 2 2023

`a)` Thay `x=-2` vào ptr có:

   `(-2)^2-2(m-1).(-2)-3=0<=>m=3/4`

Thay `m=3/4` vào ptr có: `x^2-2(3/4-1)x-3=0<=>x^2+1/2x-3=0`

             `<=>2x^2+x-6=0<=>(x+2)(2x-3)=0<=>[(x=-2),(x=3/2):}`

`b)` Ptr có nghiệm `<=>\Delta' >= 0`

            `<=>[-(m-1)]^2+3 >= 0<=>(m-1)^2+3 >= 0` (LĐ `AA m`)

`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m-2),(x_1 .x_2=c/a=-3):}`

Có:`Q=x_1 ^3 x_2+x_1 x_2 ^3 -5x_1 x_2`

`<=>Q=x_1 x_2(x_1 ^2+x_2 ^2)-5x_1 x_2`

`<=>Q=x_1 x_2[(x_1+x_2)^2-2x_1 x_2]-5x_1 x_2`

`<=>Q=-3[(2m-2)^2-2.(-3)]-5.(-3)`

`<=>Q=-3(2m-2)^2-18+15`

`<=>Q=-3(2m-2)^2-3`

Vì `-3(2m-2)^2 <= 0<=>-3(2m-2)^2-3 <= -3 AA m`

  `=>Q <= -3 AA m`

Dấu "`=`" xảy ra `<=>2m-2=0<=>m=1`

Vậy GTLN của `Q` là `-3` khi `m=1`

2 tháng 12 2019

a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1                                              

b) Phương trình (1) có hai nghiệm  x 1 , x 2  khi và chỉ khi  Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2

Theo Vi-et , ta có:  x 1 + x 2 = m          1 x 1 . x 2 = m 2 − 2 2    2

Theo đề bài ta có:  A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2

Do  − 2 ≤ m ≤ 2  nên  m + 2 ≥ 0 m − 3 ≤ 0 . Suy ra  A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4

Vậy  MaxA = 25 4  khi  m = 1 2 .

a: \(\Delta=\left(2m+2\right)^2-4\left(m^2-2m-3\right)\)

\(=4m^2+8m+4-4m^2+8m+12\)

=16m+16

Để phương trình luôn có nghiệm thì 16m+16>=0

hay m>=-1

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=28\)

\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-2m-3\right)=28\)

\(\Leftrightarrow4m^2+8m+4-3m^2+6m+9=28\)

\(\Leftrightarrow m^2+14m-15=0\)

=>(m+15)(m-1)=0

=>m=1

12 tháng 3 2022

undefined

13 tháng 5 2021

PT có 2 nghiệm `x_1,x_2`

`<=>\Delta>0`

`<=>(2m+3)^2-4m>0`

`<=>4m^2+12m+9-4m>0`

`<=>4m^2+8m+9>0``

`<=>(2m+2)^2+5>0`(luôn đúng)

Áp dụng vi-ét:$\begin{cases}x_1+x_2=2m+3\\x_1.x_2=m\end{cases}$
$x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1.x_2\\=(2m+3)^2-2m\\=4m^2+12m+9-2m\\=4m^2+10m+9\\=(2m+\dfrac52)^2+\dfrac{11}{4} \geq \dfrac{11}{4}$
Dấu "=" `<=>2m=-5/2<=>m=-5/4`

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.