K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 2 2021

\(\Delta=\left(m+4\right)^2-4\left(3m+3\right)=m^2-4m+4=\left(m-2\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+4\\x_1x_2=3m+3\end{matrix}\right.\)

\(x_1^2-x_1=x_2-x_2^2+8\)

\(\Leftrightarrow x_1^2+x_2^2-\left(x_1+x_2\right)-8=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)-8=0\)

\(\Leftrightarrow\left(m+4\right)^2-2\left(3m+3\right)-\left(m+4\right)-8=0\)

\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

NV
6 tháng 6 2021

Đề là \(x^2-\left(m+5\right)x+3m+6=0\) đúng không nhỉ?

a. Ta có:

\(\Delta=\left(m+5\right)^2-4\left(3m+6\right)=m^2-2m+1=\left(m-1\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm với mọi m

b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)

Để \(x_1;x_2\) là độ dài 2 cạnh góc vuông thì trước hết \(x_1;x_2\) dương

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m+5>0\\3m+6>0\end{matrix}\right.\) \(\Rightarrow m>-2\)

Khi đó áp dụng định lý Pitago:

\(x_1^2+x_2^2=25\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\)

\(\Leftrightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\)

\(\Leftrightarrow m^2+6m-12=0\Rightarrow\left[{}\begin{matrix}m=-3-\sqrt{21}< -2\left(loại\right)\\m=-3+\sqrt{21}\end{matrix}\right.\)

5 tháng 3 2022

a, Ta có:

\(\Delta=\left[-\left(m+5\right)\right]^2-4\left(2m+6\right)\\ =m^2+10m+25-8m-24\\ =m^2+2m+1\\ =\left(m+1\right)^2\ge0\)

Vậy pt luôn có 2 nghiệm x1,x2

b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=2m+6\end{matrix}\right.\)

\(x^2_1+x^2_2=13\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\\ \Leftrightarrow\left(m+5\right)^2-2\left(2m+6\right)=13\\ \Leftrightarrow m^2+10m+25-4m-12-13=0\\ \Leftrightarrow m^2+6m=0\\ \Leftrightarrow m\left(m+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-6\end{matrix}\right.\)

5 tháng 3 2022

em cảm ơn ạ

 

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?

PT cuối cũng bị lỗi.

Bạn xem lại đề!

1 tháng 4 2021

Em sửa rồi ấy ạ

4 tháng 5 2022

Đầu tiên đi tính \(\Delta\) gỉai ra ta dc

=> m\(\ne\)1

Với m\(\ne\)1 => pt 1 có 2 nghiệm phân biệt x1 x2 

=> theo hệ thức Vi ét ta dc

\(\left\{{}\begin{matrix}x1+x2=m+5\\x1x2=3m+6\end{matrix}\right.\)  *

Vì x1, x2 là chiều dài và chiều rộng của một hình chữ nhật có độ dài đường cao bằng 5.

=> ta có hệ thức 

\(\dfrac{1}{5^2}=\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}\)

Biên đổi và thay vi ét vào là dc

 

a: Δ=(2m+2)^2-4(m-2)

=4m^2+8m+4-4m+8

=4m^2+4m+12

=(2m+1)^2+11>=11>0

=>Phương trình luôn cóhai nghiệm phân biệt

b: x1^2+2(m+1)x2-5m+2

=x1^2+x2(x1+x2)-4m-m+2

=x1^2+x1x2+x2^2-5m+2

=(x1+x2)^2-2x1x2+x1x2-5m+2

=(2m+2)^2-(m-2)-5m+2

=4m^2+8m+4-m+2-5m+2

=4m^2+2m+8

=4(m^2+1/2m+2)

=4(m^2+2*m*1/4+1/16+31/16)

=4(m+1/4)^2+31/4>=31/4

Dấu = xảy ra khi m=-1/4

a:Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=(2m-1)^2+15>=15>0

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì -m-3<0

=>m+3>0

=>m>-3

c: Để phương trình có hai nghiệm âm thì:

2m-2<0 và -m-3>0

=>m<1 và m<-3

=>m<-3

d: x1^2+x2^2=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>0 với mọi m

16 tháng 5 2021

`a)ac=-3<0`
`=>b^2-4ac>0`
`=>` phương trình luôn có hai nghiệm phân biệt với mọi m
`b)` áp dụng vi-ét:`x_1+x_2=m,x_1.x_2=-3`
`(x_1+6).(x_2+6) = 2019`
`<=>x_1.x_2+6(x_1+x_2)+36=2019`
`<=>6m-3+36=2019`
`<=>6m+33=2019`
`<=>6m=1986`
`<=>m=331`
Vậy `m=331` thì `(x_1+6).(x_2+6) = 2019`