K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2016

Ta có: (a + 2009)(b - 2010) = (a - 2009)(b + 2010) 

=> ab - 2010a + 2009b - 2009.2010 = ab + 2010a - 2009b - 2009.2010

=> ab - 2010a + 2009b - 2009.2010 - ab - 2010a + 2009b + 2009.2010 = 0

=> -2010a + 2.2009b = 0

=> 2010a = 2.2009b

Đề sai

28 tháng 5 2016

Ta có: (a + 2009)(b - 2010) = (a - 2009)(b + 2010)

=> ab - 2010a + 2009b - 2009.2010 = ab + 2010a - 2009b - 2009.2010

=> ab - 2010a + 2009b - 2009.2010 - ab - 2010a + 2009b + 2009.2010 = 0

=> -2010a + 2.2009b = 0

=> 2010a = 2.2009b Đề sai 

17 tháng 12 2018

e moi co lop 6 nen k giai duoc

22 tháng 10 2019

phungtuantu  thek thì bl lm j hả bạn 

8 tháng 12 2018

\(\dfrac{2010c-2011b}{2009}=\dfrac{2011a-2009c}{2010}=\dfrac{2009b-2010a}{2011}\)

Đặt: \(\left\{{}\begin{matrix}2009=x\\2010=y\\2011=z\end{matrix}\right.\) Ta có:

\(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}\)

\(\Leftrightarrow\dfrac{cxy-bxz}{x^2}=\dfrac{ayz-cxy}{y^2}=\dfrac{bxz-ayz}{z^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{cxy-bxz}{x^2}=\dfrac{ayz-cxy}{y^2}=\dfrac{bxz-ayz}{z^2}=\dfrac{cxy-bxz+ayz-cxy+bxz-ayz}{x^2+y^2+z^2}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}cy=bz\Leftrightarrow\dfrac{b}{y}=\dfrac{c}{z}\\az=cx\Leftrightarrow\dfrac{a}{x}=\dfrac{c}{z}\\bx=ay\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\end{matrix}\right.\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\Leftrightarrow\dfrac{a}{2009}=\dfrac{b}{2010}=\dfrac{c}{2011}\left(đpcm\right)\)

\(\Leftrightarrow\left(a+2009\right)\left(b-2010\right)=\left(a-2009\right)\left(b+2010\right)\)

=>ab-2010a+2009b-2009x2010=ab+2010a-2009b-2009x2010

=>-4020a=-4018b

=>a/2009=b/2010

5 tháng 5 2019

\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....+\frac{1}{80}\)

\(=\left(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+\frac{1}{44}+.....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+......+\frac{1}{80}\right)\)

\(>\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+.....+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+\frac{1}{80}+.....+\frac{1}{80}\right)\)

\(=\frac{1}{3}+\frac{1}{4}\)

\(=\frac{7}{12}\)

5 tháng 5 2019

\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)

11 tháng 7 2017

thầy ơi bài này làm rồi

11 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Vậy:

\(\frac{a\cdot c}{b\cdot d}=\frac{bk\cdot dk}{b\cdot d}=\frac{k^2\cdot\left[b\cdot d\right]}{b\cdot d}=k^2\)

\(\frac{2009a^2+2010c^2}{2009b^2+2010d^2}=\frac{2009\left[bk\right]^2+2010\left[dk\right]^2}{2009b^2+2010d^2}=\frac{2009\cdot b^2k^2+201d^2k^2}{2009b^2+2010d^2}=\frac{k^2\left[2009b^2+2010d^2\right]}{2009b^2+2010d^2}=k^2\)Vậy khi \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{ac}{bd}=\frac{2009a^2+2010c^2}{2009b^2+2010d^2}\)