Tìm UwCLN của 2n-1 và 9n+4(n\(\in\)N*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên xem lại đề vì 61440 ms làm đc
Tích của a/32 với b/32 là:
61440 : 32 : 32= 60.
Chắc chắn a/32 và b/32 sẽ nguyên tố cùng nhau vì ước chung ln của chúng là 32.
Vậy a là 5.32=160 và b là 12.32=384
Ta co :
Goi 2n-1 va 9n+4 la d va d thuoc N*
\(\Rightarrow\)d = (2n-1,9n+4)
\(\Rightarrow\)d=2n-1 \(\Rightarrow\) 18n-9
\(\Rightarrow\)d=9n+4\(\Rightarrow\) 18n+8
Vay UCLN cua 2n-1 va 9n+4 la 17
Bạn vào Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Gọi d = ƯCLN(2n - 1; 9n + 4) (d thuộc N*)
=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d
=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d
=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d
=> (18n + 8) - (18n - 9) chia hết cho d
=> 18n + 8 - 18n + 9 chia hết cho d
=> 17 chia hết cho d
Mà \(d\in\)N* => \(d\in\left\{1;17\right\}\)
+ Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17
=> 2n - 1 + 17 chia hết cho 17; 9n + 4 + 68 chia hết cho 17
=> 2n + 16 chia hết cho 17; 9n + 72 chia hết cho 17
=> 2.(n + 8) chia hết cho 17; 9.(n + 8) chia hết cho 17
Do (2;17)=1; (9;17)=1 => n + 8 chia hết cho 17
=> n = 17k + 9 (k thuộc N)
Vậy với \(n\ne17k+9\)(k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 1
Với n = 17k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 17
Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1) ⋮ d ⇒ (18n + 8) - (18n - 9) ⋮ 17 ⇒ 17 ⋮ d ⇒ d ∈ {1, 17}.
Ta có 2n - 1 ⋮ 17 ⇔ 2n - 18 ⋮ 17 ⇔ 2(n - 9) ⋮ 17.
Vì ƯCLN(2 ; 17) = 1 ⇒ n - 9 ⋮ 17 ⇔ n - 9 = 17k ⇔ n = 17k + 9 (k ∈ N)
- Nếu n = 17k + 9 thì 2n - 1 = 2 . (17k + 9) - 1 = 34k - 17 = 17 . (2k + 1)⋮ 17.
và 9n + 4 = 9 . (17k + 9) + 4 = 153k + 85 = 17 . (9 + 5) ⋮ 17.
Do đó ƯCLN(2n - 2 ; 9n + 4) = 17
- Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó ƯCLN(2n - 1 ; 9n + 4) = 1
Vậy ƯCLN(2n - 1 ; 9n + 4) = 17
Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1) ⋮ d ⇒ (18n + 8) - (18n - 9) ⋮ 17 ⇒ 17 ⋮ d ⇒ d ∈ {1, 17}.
Ta có 2n - 1 ⋮ 17 ⇔ 2n - 18 ⋮ 17 ⇔ 2(n - 9) ⋮ 17.
Vì ƯCLN(2 ; 17) = 1 ⇒ n - 9 ⋮ 17 ⇔ n - 9 = 17k ⇔ n = 17k + 9 (k ∈ N)
- Nếu n = 17k + 9 thì 2n - 1 = 2 . (17k + 9) - 1 = 34k - 17 = 17 . (2k + 1)⋮ 17.
và 9n + 4 = 9 . (17k + 9) + 4 = 153k + 85 = 17 . (9 + 5) ⋮ 17.
Do đó ƯCLN(2n - 2 ; 9n + 4) = 17
- Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó ƯCLN(2n - 1 ; 9n + 4) = 1
Vậy ƯCLN(2n - 1 ; 9n + 4) = 17
Câu hỏi của Clash Of Clans - Toán lớp 6 - Học toán với OnlineMath
Tham khảo nhé !
Đặt UCLN ( 2n - 1 ; 9n + 4 ) = d
=> 2n - 1 chia hết cho d ; 9n + 4 chia hết cho d
=> 9 ( 2n - 1 ) chia hết cho d ; 2 ( 9n + 4 ) chia hết cho d
=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d
=> 18n - 9 - 18n - 8 chia hết cho d
=> - 15 chia hết cho d
=> d thuộc Ư ( -15 ) = { -15 ; - 5 ; - 3 ; - 1 ; 1 ; 3 ; 5 ; 15 }
Mà d lớn nhất => d = 15
Vậy UCLN ( 2n - 1 ; 9n + 4 ) = 15
Gọi d = (2n-1) ;(9n+4) ⇒ 2n-1 ; 9n+4 ⋮ d
⇒ 2 (9n+4) - 9(2n-1) = 18n+8 - 18n+9 = 17 ⋮ d
⇒d=1 hoặc d= 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ⋮ 17 thì ƯCLN(2n-1;9n+4) = 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ∅ ⋮ 17 thì ƯCLN (2n-1;9n+4) = 1
Gọi d = (2n-1) ;(9n+4) ⇒ 2n-1 ; 9n+4 ⋮ d
⇒ 2 (9n+4) - 9(2n-1) = 18n+8 - 18n+9 = 17 ⋮ d
⇒d=1 hoặc d= 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ⋮ 17 thì ƯCLN(2n-1;9n+4) = 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ∅ ⋮ 17 thì ƯCLN (2n-1;9n+4) = 1
Ta có: 1+2+3+...+n = n(n+1)/2
Gọi d = ƯCLN ( n(n+1)/2, 2n+1) ( d thuộc N*)
=> n(n+1)/2 chia hết cho d, 2n+1 chia hết cho d
=> n(n+1) chia hết cho d, 2n+1 chia hết cho d
=> n2+n chia hết cho d, n.(2n+1) chia hết cho d
=> n2+n chia hết cho d, 2n2+n chia hết cho d
=> (2n2+n) - (n2+n) chia hết cho d
=> 2n2+n-n2-n chia hết cho d
=> n2 chia hết cho d
Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d
=> n chia hết cho d
=> 2n chia hết cho d
Mà 2n+1 chia hết cho d => (2n+1)-2n chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN ( n(n+1)/2, 2n=1) = 1
Vậy ƯCLN của 1+2+3+...+n và 2n+1 bằng 1 với n thuộc N*
Gọi d=UCLN(2n-1;9n+4)
\(\Leftrightarrow9\left(2n-1\right)-2\left(9n+4\right)⋮d\)
\(\Leftrightarrow-17⋮d\)
=>d=17