K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2016

Tìm ra 3 đỉnh tam giác và độ dài 3 cạnh tam giác sau đó dùng pytago đảo

2 tháng 6 2016

Ta giả sử: 

\(\hept{\begin{cases}AB:y=-\frac{x}{2}+\frac{13}{2}\\BC:y=-2x+13\\CA:y=\frac{x}{2}+3\end{cases}}\)

Ta thấy hệ số góc của BC và CA có tích bằng -1 nên BC vuông góc CA, hay tam giác ABC vuông tại C.

Như vậy đường tròn ngoại tiếp tam giác ABC là đường tròn đường kính AB.

Giải hệ \(\hept{\begin{cases}x+2y-13=0\\2x+y-13=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{3}\\y=\frac{13}{3}\end{cases}}\) ta được \(B\left(\frac{13}{3};\frac{13}{3}\right)\)

Giải hệ \(\hept{\begin{cases}x+2y-13=0\\x-2y+6=0\end{cases}}\) ta được tọa độ A. 

Dùng công thức tính khoảng cách AB, ta tìm đc đường kính, sau ra suy ra bán kính em nhé :))

2 tháng 6 2016

dạ vâng, em cám ơn cô nhiều ạ

27 tháng 12 2018

Gỉa sử cạnh AB , BC , AC lần lượt có phương trình (1),(2),(3) ta có:

\(a_{AB}=\frac{-1}{2}\)

\(a_{BC}=-2\)

\(a_{AC}=\frac{1}{2}\)

Lại có: \(a_{AC}.a_{BC}=-1\)

\(\Rightarrow\Delta ABC\)vuông tại\(C\)

Cạnh AB là đường kính của đường tròn ngoại tiếp

Xác định tọa độ của A và B , ta có:

\(A\left(-2;2\right)\)            \(B\left(8;-3\right)\)

Do đó: \(AB=\sqrt{\left(8+2\right)^2+\left(-3-2\right)^2}\)

\(\Rightarrow AB=\sqrt{125}\approx11,2\)

Vậy:   \(R=\frac{AB}{2}=\frac{11,2}{2}\approx5,6\)

NV
9 tháng 3 2021

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x+2y-5=0\\4x+13y-10=0\end{matrix}\right.\) \(\Rightarrow A\left(9;-2\right)\)

\(\Rightarrow\overrightarrow{AC}=\left(-5;5\right)=5\left(-1;1\right)\)

Phương trình AC: \(1\left(x-4\right)+1\left(y-3\right)=0\Leftrightarrow x+y-7=0\)

Phương trình đường thẳng qua C vuông góc AD có dạng:

\(2\left(x-4\right)-1\left(y-3\right)=0\Leftrightarrow2x-y-5=0\)

Gọi E là hình chiếu của C lên AD \(\Rightarrow\left\{{}\begin{matrix}2x-y-5=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow E\left(3;1\right)\)

Gọi F là điểm đối xứng C qua AD \(\Rightarrow F\) thuộc AB đồng thời E là trung điểm CF \(\Rightarrow F\left(2;-1\right)\)

\(\overrightarrow{AF}=\left(-7;1\right)\Rightarrow\) pt AB: \(1\left(x-2\right)+7\left(y+1\right)=0\Leftrightarrow x+7y+5=0\)

Tọa độ B có dạng: \(B\left(-7b-5;b\right)\) \(\Rightarrow M\left(\dfrac{-7b-1}{2};\dfrac{b+3}{2}\right)\)

M thuộc AM nên: \(4\left(\dfrac{-7b-1}{2}\right)+13\left(\dfrac{b+3}{2}\right)-10=0\Rightarrow b=1\Rightarrow B\left(-12;1\right)\)

\(\Rightarrow\overrightarrow{BC}\Rightarrow\) phương trình BC

Tính độ dài 3 cạnh, tính diện tích theo công thức Hê-rông

Bạn tự hoàn thành phần còn lại nhé

12 tháng 3 2021

H là trực tâm của tam giác nhỉ.

A có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x-2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\Rightarrow A\left(-1;0\right)\)

B có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Rightarrow B\left(0;2\right)\)

H có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}x-2y+1=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow H\left(0;\dfrac{1}{2}\right)\)

Phương trình đường thẳng AC: \(y=0\)

Phương trình đường thẳng CH: \(x+2y-1=0\)

C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}y=0\\x+2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\Rightarrow H\left(1;0\right)\)