K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+...+\frac{1}{60}\right)>\frac{1}{45}.15+\frac{1}{60}.15=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

=>đpcm

l-i-k-e cho mình nha

9 tháng 3 2017

vì sao lại thế

24 tháng 12 2023

       A = 1 + 3 + 32 + 33 + 34 + ... + 32022

     3A = 3  + 32 + 33 + ... + 34 + ... + 32022 + 32023

3A - A = (3 + 32 + 33 + ... + 34 + 32022 + 32023) - (1 + 3+...+ 32022)

2A     = 3 + 32 + 33 + 34 + ... + 32022 + 32023 - 1 - 3 - ... - 32022

2A =  (3 - 3) + (32 - 32) + (34 - 34) + (32022 - 32022) + (32023 - 1)

2A = 32023 - 1 

 A  = \(\dfrac{3^{2023}-1}{2}\)

A = \(\dfrac{3^{2023}}{2}\) - \(\dfrac{1}{2}\)

B - A = \(\dfrac{3^{2023}}{2}\) - (\(\dfrac{3^{2023}}{2}\) - \(\dfrac{1}{2}\))

B - A = \(\dfrac{3^{2023}}{2}\) - \(\dfrac{3^{2023}}{2}\) + \(\dfrac{1}{2}\)

B - A = \(\dfrac{1}{2}\)

 

5 tháng 11 2021

C

5 tháng 11 2021

A

27 tháng 9 2021

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12

Mà đoạn 2A sai nhé bạn, sửa lại:

2A = 3101−13101−1 2A=-10001

A=-10001/2

A=-5000,5

Vậy A=-5000,5

30 tháng 11 2021

Bài 1: 

c: x=4

b: x=2

30 tháng 11 2021

a) (x - 140) : 7 = 33 - 23 . 3

(x - 140) : 7 = 27 - 8 . 3 = 27 - 24 = 3

x - 140 = 3 x 7 = 21

x = 21 + 140 = 161

b) x. x2 = 28 : 23

x5 = 25

=> x = 2

c) (x + 2) . ( x - 4) = 0

x = -2 hoặc 4

d) 3x-3 - 32 = 2 . 32 =

3x-3 - 9 = 2 . 9 = 18

3x-3 = 18 + 9 = 27

3x-3 = 33

=> x - 3 = 3

x = 3 + 3 = 6

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

24 tháng 12 2022

a,       A = 1 + 3 + 32 +  33 +....+32022

     3A   =      3  + 32  + 33 +.....+32022 + 32023

3A - A  =     32023 - 1

      2A =     32023 - 1

2A - 22023 = 32023 - 1 - 22023 

2A - 22023 = -1 

b, x \(\in\) Z và x + 10 \(⋮\) x - 1 ( đk x# 1)

                      x + 10 \(⋮\) x - 1 

            \(\Leftrightarrow\) x - 1 + 11 \(⋮\) x - 1

                            11 \(⋮\) x - 1

                    x-1 \(\in\) { -11; -1; 1; 11}

                    x     \(\in\) { -10; 0; 2; 12}

Kết luận các số nguyên x thỏa mãn yêu cầu đề bài là :

                   x   \(\in\) { -10; 0; 2; 12}

Câu 32: C

Câu 33: C

Câu 34: C

Câu 35: B

Câu 36: B