phân số \(\frac{45}{57}\) có phải là phân số tối giản ko
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{n}{n+1}\) (n \(\ne\) - 1)
Gọi ước chung lớn nhất của n và n + 1 là d ta có:
\(\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\)
⇒ n + 1 - n ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy ƯCLN(n; n +1) = 1 hay phân số \(\dfrac{n}{n+1}\) là phân số tối giản
Đầu tiên, cần chứng minh \(\frac{k}{k+1}\) là phân số tối giản với k là số tự nhiên. Thật vậy , gọi ƯCLN(k,k+1) = d (\(d\ge1\))
\(\begin{cases}k⋮d\\k+1⋮d\end{cases}\) => (k+1)-k\(⋮d\) => \(1⋮d\Rightarrow d\le1\)
Mà \(d\ge1\) => d = 1
Vậy \(\frac{k}{k+1}\) là phân số tối giản.
Áp dụng : Đặt \(k=\frac{a}{b}\) , khi đó ta có : \(\frac{1}{k}+1=\frac{b}{a}+1=\frac{a+b}{a}\Rightarrow\frac{a}{a+b}=\frac{k}{k+1}\) là p/s tối giản.
Do a/b tối giản => ƯCLN (a,b) = 1
Mà \(\frac{a}{a+b}=\frac{1}{b}\) (do tính chất loại bỏ)
Tử số là 1 => 1/b tối giản
Vậy a/a + b tối giản
Mk giải theo cách mk hiểu chứ ko phải chặt chẽ lắm đâu nha !!!
Với \(k\inℕ\)thì \(k\)có thể bằng \(0\)
\(\Rightarrow kn\)có thể bằng \(0\)
\(\Rightarrow\frac{m}{kn+m}=\frac{m}{0+m}=\frac{m}{m}=1\)
\(\Rightarrow\frac{m}{kn+m}\)ko phải phân số tối giản
Vậy để \(\frac{m}{kn+m}\)là phân số tối giản thì \(k\inℕ^∗\)
Chắc vậy !!!
\(\frac{a}{b}\)toi gian khi a khong chia het cho b va b khong chia het cho b
mà a chia hết cho a, a không chia hết cho b suy ra a không chia hết cho a+b
nên a phần a+b tối giản
Phân số \(\frac{8}{11}\) là phân số tối giản.
\(\frac{a}{a}+b\) là phân số tối giản khi UCLN của chúng bằng 1 hoặc -1 bạn nhé
Trả lời : \(\frac{364}{729}\)đã tối giản
# Linh_Chymtee2k7 ~ Yew thw #
\(\frac{45}{57}=\frac{15.3}{19.3}=\frac{15}{19}\)
Vậy \(\frac{45}{57}\)k là p/s tối giản
_HT_
TL
\(\frac{45}{57}\)không phải là phân số tối giản Vì :
\(\frac{45}{57}=\frac{45\div3}{57\div3}=\frac{15}{19}\)
HT nha k cho mik