Tìm f(2) biết 2f(x)+f(1/2)=2x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đúng là sai đề thật .... mk sửa lại r ... bạn có thể giúp mk xem lại đc k
tại x = 1/2 ta có: \(2.f\left(\frac{1}{2}\right)+f\left(\frac{1}{2}\right)=2.\frac{1}{2}+1\) => \(3.f\left(\frac{1}{2}\right)=2\) => \(f\left(\frac{1}{2}\right)=\frac{2}{3}\)
Tại x = 2 ta có: \(2.f\left(2\right)+f\left(\frac{1}{2}\right)=2.2+1=5\)
=> \(2.f\left(2\right)=5-f\left(\frac{1}{2}\right)=5-\frac{2}{3}=\frac{13}{3}\)
=> \(f\left(2\right)=\frac{13}{3}:2=\frac{13}{6}\)
\(f\left(x\right)+2f'\left(x\right)+f''\left(x\right)=x^3+2x^2\)
\(\Leftrightarrow f\left(x\right)+f'\left(x\right)+f'\left(x\right)+f''\left(x\right)=x^3+2x^2\)
\(\Leftrightarrow f\left(x\right)+f'\left(x\right)+\left[f\left(x\right)+f'\left(x\right)\right]'=x^3+2x^2\)
Đặt \(f\left(x\right)+f'\left(x\right)=u\left(x\right)\) ta được:
\(u\left(x\right)+u'\left(x\right)=x^3+2x^2\)
\(\Leftrightarrow e^x.u\left(x\right)+e^x.u'\left(x\right)=e^x\left(x^3+2x^2\right)\)
\(\Leftrightarrow\left[e^x.u\left(x\right)\right]'=e^x\left(x^3+2x^2\right)\)
\(\Rightarrow e^x.u\left(x\right)=\int e^x\left(x^3+2x^2\right)dx=e^x\left(x^3-x^2+2x-2\right)+C\)
\(\Leftrightarrow e^x\left[f\left(x\right)+f'\left(x\right)\right]=e^x\left(x^3-x^2+2x-2\right)+C\)
Thay \(x=0\) vào ta được \(2=-2+C\Rightarrow C=4\)
\(\Rightarrow e^x.f\left(x\right)+e^x.f'\left(x\right)=e^x\left(x^3-x^2+2x-2\right)+4\)
\(\Leftrightarrow\left[e^x.f\left(x\right)\right]'=e^x\left(x^3-x^2+2x-2\right)+4\)
\(\Rightarrow e^x.f\left(x\right)=\int\left[e^x\left(x^3-x^2+2x-2\right)+4\right]dx\)
\(\Rightarrow e^x.f\left(x\right)=e^x\left(x^3-4x^2+10x-12\right)+4x+C_1\)
Thay \(x=0\) vào ta được: \(1=-12+C_1\Rightarrow C_1=13\)
\(\Rightarrow e^x.f\left(x\right)=e^x\left(x^3-4x^2+10x-12\right)+4x+13\)
\(\Rightarrow f\left(x\right)=x^3-4x^2+10x-12+\frac{4x+13}{e^x}\)
\(\Rightarrow\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\left(x^3-4x^2+10x-12\right)dx+\int\limits^1_0\left(4x+13\right).e^{-x}dx\)
Tích phân trước bạn tự tính, tích phân sau cũng đơn giản thôi:
Đặt \(\left\{{}\begin{matrix}u=4x+13\\dv=e^{-x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=4dx\\v=-e^{-x}\end{matrix}\right.\)
\(\Rightarrow I=-\left(4x+13\right).e^{-x}|^1_0+4\int\limits^1_0e^{-x}dx=\frac{-17}{e}+13-4.e^{-x}|^1_0=17-\frac{21}{e}\)
Casio cho kết quả tích phân trước là \(-\frac{97}{12}\)
Vậy \(\int\limits^1_0f\left(x\right)dx=\frac{107}{12}-\frac{21}{e}\)
\(2f\left(x\right)+f\left(\frac{1}{2}\right)=2x+1\) (1)
\(\Rightarrow2f\left(\frac{1}{2}\right)+f\left(\frac{1}{2}\right)=2\Rightarrow3f\left(\frac{1}{2}\right)=2\Rightarrow f\left(\frac{1}{2}\right)=\frac{2}{3}\)
Thay f(1/2)=2/3 vào (1) được :
\(f\left(x\right)=\frac{2x+1-\frac{2}{3}}{2}=\frac{6x+1}{6}\)=> \(f\left(2\right)=\frac{2.6+1}{6}=\frac{13}{6}\)
$2f\left(x\right)+f\left(\frac{1}{2}\right)=2x+1$2ƒ (x)+ƒ (12 )=2x+1 (1)
\(\Rightarrow2f\left(\frac{1}{2}\right)+f\left(\frac{1}{2}\right)=2\Rightarrow3f\left(\frac{1}{2}\right)=2\Rightarrow f\left(\frac{1}{2}\right)=\frac{2}{3}\)
Thay f(1/2)=2/3 vào (1) được :
\(f\left(x\right)=\frac{2x+1-\frac{2}{3}}{2}=\frac{6x+1}{6}\)=> \(f\left(2\right)=\frac{2.6+1}{6}=\frac{13}{6}\)
Đúng nha