K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2016

*đen ta phẩy= (m-1)^2+(m^2-1)>0

=>.....................

*(2x1-x2)(2x2-x1)=5x1x2-2x1^2-2x2^2=5x1x2-2(x1+x2)=5m^2-5-4m+1>=-4.8

khi m=2/5

a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)

\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)

\(\Leftrightarrow4x^2-8x-17=0\)

\(\Leftrightarrow\left(2x-2\right)^2=21\)

hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)

b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)

\(=4+4m^2+16=4m^2+20>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

AH
Akai Haruma
Giáo viên
21 tháng 5 2022

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

4 tháng 5 2021

Ta có:

\(\Delta=\left(m+2\right)^2-4\left(m-1\right)=m^2+4m+4-4m+4=m^2+8>0\left(\forall m\right)\)

=> PT luôn có 2 nghiệm phân biệt với mọi GT của m

Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m-1\end{cases}}\)

Thay vào A ta được:

\(A=x_1^2+x_2^2-3x_1x_2\)

\(A=\left(x_1+x_2\right)^2-5x_1x_2\)

\(A=\left(-m-2\right)^2-5\left(m-1\right)\)

\(A=m^2+4m+4-5m+5=m^2-m+9\)

\(A=\left(m^2-m+\frac{1}{4}\right)+\frac{35}{4}\)

\(A=\left(m-\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\left(\forall m\right)\)

Dấu "=" xảy ra khi: \(m=\frac{1}{2}\)

Vậy \(Min_A=\frac{35}{4}\Leftrightarrow m=\frac{1}{2}\)

4 tháng 5 2021

Δ = b2 - 4ac = ( m + 2 )2 - 4( m - 1 ) = m2 + 4m + 4 - 4m + 4 = m2 + 8 ≥ 8 > 0 ∀ m

hay phương trình luôn có hai nghiệm phân biệt với mọi m

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m-2\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)

Khi đó : A = x12 + x22 - 3x1x2 = ( x1 + x2 )2 - 5x1x2

= ( -m - 2 )2 - 5( m - 1 ) = m2 + 4m + 4 - 5m + 5

= m2 - m + 9 = ( m - 1/2 )2 + 35/4 ≥ 35/4 ∀ m

Dấu "=" xảy ra <=> m = 1/2. Vậy MinA = 35/4

NV
22 tháng 3 2022

a. Phương trình có nghiệm \(x=-1\) nên:

\(\left(-1\right)^2-2\left(m-1\right).\left(-1\right)+m-5=0\)

\(\Leftrightarrow1+2m-2+m-5=0\)

\(\Leftrightarrow m=2\)

Khi đó: \(x_2=-\dfrac{c}{a}=-\dfrac{m-5}{1}=-\dfrac{2-5}{1}=3\)

b.

\(\Delta'=\left(m-1\right)^2-\left(m-5\right)=m^2-3m+6=\left(m-\dfrac{3}{2}\right)^2+\dfrac{15}{4}>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm phân biệt với mọi m

c.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(A=4\left(m-1\right)^2-2\left(m-5\right)\)

\(A=4m^2-10m+14=4\left(m-\dfrac{5}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

\(A_{min}=\dfrac{31}{4}\) khi \(m-\dfrac{5}{4}=0\Rightarrow m=\dfrac{5}{4}\)

21 tháng 5 2018

a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)

\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)

\(\Delta'=b'^2-ac\)

\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)

\(=m^2-2m+1+6m+7\)

\(=m^2+4m+8\)

\(=m^2+2.m.2+2^2+4\)

\(=\left(m+2\right)^2+4>0,\forall m\)

Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m