Cho đa thức : 2 P x a x bx c ( ) . = + + Cho biết 9a - b = -3c, Chứng minh rằng: Trong ba số P(- 1) ; P(2) ; P(-2) có ít nhất 1 số không âm, ít nhất 1 số không dươn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P\left(x\right)=ax^2+bx+c\) và 9a - b + 3c = 0.
\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(2\right)=4a+2b+c\\P\left(-2\right)=4a-2b+c\end{cases}}\)
\(\Rightarrow P\left(-1\right)+P\left(2\right)+P\left(-2\right)=a-b+c+4a+2b+c+4a-2b+c\)
\(=9a-b+3c\)
\(=0\)
\(\Rightarrow\)trong 3 số P(-1); P(2) và P(-2) sẽ có nhiều nhất ít nhất 1 số không âm để tổng 3 số trên là 0 (thỏa mãn điều kiện đề cho).
Bạn thay -1, -2, -3 vào đa thức. Cộng cả 3 vào sẽ có kết quả.
p/s ngu như lol bài dễ vl cũng bày đặt ;V
Bài 4:
\(f\left(5\right)-f\left(4\right)=2019\)
=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)
=>\(61a+9b+21c=2019\)
\(f\left(7\right)-f\left(2\right)\)
\(=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c\)
\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số
Ta có: a + 3c + a + 2b = 2019 + 2020 = 4039
=> 2 ( a + b + c ) = 4039 - c (1)
a; b ; c là các số hữu tỉ không âm => a; b ; c \(\ge\)0
=> 2 ( a + b + c ) = 4039 - c \(\le\)4039
=> a + b + c \(\le\frac{4039}{2}=2019\frac{1}{2}\)
mà f(1) = a + b + c
=> f (1) \(\le2019\frac{1}{2}\)
Dấu "=" xảy ra <=> c = 0 ; a = 2019 ; b = 1/2
tham khảo
Vì P ( x ) = ax2ax2 + bx + c chia hết cho 5 với mọi giá trị nguyên của x nên :
P ( 0 ) ; P ( 1 ) ; P ( - 1 ) tất cả đều chia đều cho 5 .
Ta có :
P ( 0 ) chia hết cho 5
⇒ a . 02+ b . 0 + c chia hết cho 5
⇒ c chia hết cho 5
P ( 1 ) chia hết cho 5
⇒ a . 12 + b . 1 + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Vì c chia hết cho 5 ⇒ a + b chia hết cho 5 ( 1 )
P ( - 1 ) chia hết cho 5
⇒ a . (−1)2(−1)2 + b . ( - 1 ) + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Từ ( 1 ) ; ( 2 ) ⇒ a + b + a - b chia hết cho 5
⇒ 2a chia hết cho 5
Mà ƯCLN ( 2 ; 3 ) = 1 ⇒ a chia hết cho 5
Vì a + b chia hết cho 5 ; a chia hết cho 5 ⇒ b chia hết cho 5
Vậy a , b , c chia hết cho 5 . ( đpcm )
ai bt giúp mình đc ko