K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

a) X2 _ 2XY + Y+ 1= (X+Y) +1 lớn hơn hoặc bằng 1 => >0 với mọi số thực X và Y

b) X-X-1 = -X2 + X -1 = -(X2 -2.1/2X +1/4)-5/4 nhỏ hơn hoặc bằng -5/4 <0 với mọi số thực X

20 tháng 5 2016

a) x2-2xy+y2+1=(x-y)2+1>0(với mọi số thực x và y)

b) x-x2-1=-(x2-x+1\4)-3\4=-(x-1\2)2-3\4<0(với mọi số thực x)

1 tháng 4 2022

⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0

x^2+4y^2+z^2-2x-6z+8y+15

=x^2+4y^2+z^2-2x-6z+8y+1+1+4+9

=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1

=(x-1)^2+4(y+1)^2+(z-3^)2+1

Ta thấy:(x−1)^2≥0

              4(y+1)^2≥0

             (z−3)^ 2≥0

{(x−1)^24(y+1)^2(z−3)^2≥0

⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0

⇒(x−1)2+4(y+1)2+(z−3)2+1≥0+1=1>0

Khét đấy hot girl !

17 tháng 11 2017

Ta có:

x2 – 2xy + y2 + 1

= (x2 – 2xy + y2) + 1

= (x – y)2 + 1.

(x – y)2 ≥ 0 với mọi x, y ∈ R

⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).

9 tháng 12 2019

a) \(x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1\\Do\left(x+y\right)^2>0\forall x\in R\\ \Rightarrow\left(x+y\right)^2+1>0\forall\in R\)

2 tháng 10 2021

x2-6xy+y2+1>0
(x-y)2+1>0
mà (x-y)^2>0
 

2 tháng 10 2021

\(-25x^2+5x-1=-\left(25x^2-5x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(5x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\forall x\)

29 tháng 10 2019

6 tháng 12 2021

Lời giải:

a) (x2 + 2xy + y2) : (x + y)

= (x + y)2 : (x + y)

= x + y

b) (125x3 + 1) : (5x + 1)

= [(5x)3 + 1] : (5x + 1)

= (5x + 1)[(5x)2 – 5x + 1]] : (5x + 1)

= (5x)2 – 5x + 1

= 25x2 – 5x + 1

c) (x2 – 2xy + y2) : (y – x)

 

= (x – y)2 : [-(x – y)]

= -(x – y)

= y – x

Hoặc (x2 – 2xy + y2) : (y – x)

= (y2 – 2yx + x2) : (y – x)

= (y – x)2 : (y – x)

= y – x

  
6 tháng 12 2021

\(\text{a) (x^2 + 2xy + y^2) : (x + y)}\\ \left(x+y\right)^2:\left(x+y\right)=x+y\)

 

29 tháng 9 2023

a) \(\dfrac{1}{x^3-8}=\dfrac{1}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{2}{2\left(x-2\right)\left(x^2+2x+4\right)}\)

\(\dfrac{3}{4-2x}=\dfrac{-3}{2\left(x-2\right)}=\dfrac{-3\left(x^2+2x+4\right)}{2\left(x-2\right)\left(x^2+2x+4\right)}\)

b) \(\dfrac{x}{x^2-1}=\dfrac{x}{\left(x+1\right)\left(x-1\right)}=\dfrac{x\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\)

\(\dfrac{1}{x^2+2x+1}=\dfrac{1}{\left(x+1\right)^2}=\dfrac{x-1}{\left(x+1\right)^2\left(x-1\right)}\)

c) \(\dfrac{1}{x+2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)^2}\)

\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{x+2}{\left(x+2\right)\left(x-2\right)^2}\)

\(\dfrac{5}{2-x}=\dfrac{-5}{x-2}=\dfrac{-5\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^2}\)

d) \(\dfrac{1}{3x+3y}=\dfrac{1}{3\left(x+y\right)}=\dfrac{\left(x-y\right)^2}{3\left(x+y\right)\left(x-y\right)^2}\)

\(\dfrac{2x}{x^2-y^2}=\dfrac{2x}{\left(x+y\right)\left(x-y\right)}=\dfrac{6x\left(x-y\right)}{3\left(x+y\right)\left(x-y\right)^2}\)

\(\dfrac{x^2-xy+y^2}{x^2-2xy+y^2}=\dfrac{x^2-xy+y^2}{\left(x-y\right)^2}=\dfrac{3\left(x^2-xy+y^2\right)\left(x+y\right)}{3\left(x+y\right)\left(x-y\right)^2}=\dfrac{3\left(x^3+y^3\right)}{3\left(x+y\right)\left(x-y\right)^2}\)

29 tháng 9 2023

phần c là x+1 / x2 - 4x +4 mà bn