K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2023

`x^2 -4x+4-y^2`

`=(x^2 -4x+4)-y^2`

`=(x-2)^2 -y^2`

`=(x-2-y)(x-2+y)`

`x^2+2xy+y^2-x-y`

`=(x^2+2xy+y^2) -(x+y)`

`=(x+y)^2 -(x+y)`

`=(x+y)(x+y-1)`

`x^2-2xy+y^2-9`

`=(x^2-2xy+y^2)-3^2`

`=(x-y)^2-3^3`

`=(x-y-3)(x-y+3)`

Tách ra đi cậu.

12 tháng 10 2023

https://hoc24.vn/cau-hoi/927x118.8505894378996

giúp mik với ạ

AH
Akai Haruma
Giáo viên
15 tháng 1 2023

Lời giải:
$P=(x+1)^3-(x+1)^3-[(x-1)^2+(x+1)^2]$

$=-[(x-1)^2+(x+1)^2]=-[(x^2-2x+1)+(x^2+2x+1)]=-2(x^2+1)$ phụ thuộc vào giá trị của biến nhé. Bạn xem lại đề.

$Q=(2x)^3-y^3+(2x)^3+y^3-16x^3$

$=8x^3-y^3+8x^3+y^3-16x^3=(8x^3+8x^3-16x^3)+(-y^3+y^3)=0+0=0$ không phụ thuộc vào giá trị của biến (đpcm)

15 tháng 1 2023

câu P= (x+1)3-(x-1)3-3[(x-1)2+(x+1)2

làm lại hộ mình với ạ 

19 tháng 10 2018

Biến đổi vế trái (VT), ta được:

17 tháng 10 2017

\(x^2-xy+y^2=x^2-2.x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2+\frac{3y^2}{4}\)\(=\left(x-\frac{1}{2}y\right)^2+\frac{3y^2}{4}\ge0\) với mọi x,y.

\(A=x^2+2y^2-2xy-2y+15\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+14>14>0\)

Vậy : \(A>0\)

17 tháng 11 2017

Ta có:

x2 – 2xy + y2 + 1

= (x2 – 2xy + y2) + 1

= (x – y)2 + 1.

(x – y)2 ≥ 0 với mọi x, y ∈ R

⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).