K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Sửa đề: \(AB\cdot AC=AT^2\)

Xét (O) có

\(\widehat{TCB}\) là góc nội tiếp chắn \(\stackrel\frown{TB}\)

\(\widehat{ATB}\) là góc tạo bởi tiếp tuyến TA và dây cung TB

Do đó: \(\widehat{TCB}=\widehat{ATB}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

hay \(\widehat{ACT}=\widehat{ATB}\)

Xét ΔACT và ΔATB có

\(\widehat{ACT}=\widehat{ATB}\)(cmt)

\(\widehat{TAB}\) chung

Do đó: ΔACT\(\sim\)ΔATB(g-g)

Suy ra: \(\dfrac{AC}{AT}=\dfrac{AT}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AT^2=AB\cdot AC\)(đpcm)

19 tháng 3 2021

bạn vẽ hình hộ mik đc ko

17 tháng 2 2019

b) tia phân giác góc BTC nha mọi người

17 tháng 2 2019

help me 

a: góc AEB=(sd cung BC+sđ cung DM)/2

=1/2(sđ cung BC+sđ cung CM)

=1/2*sđ cung BM

=góc ABM

=góc ABE

=>ΔABE cân tại A

mà AH là phân giác

nen AH vuông góc với BE

b: Xét ΔMDE và ΔMBD có

góc MDE=góc MBD

góc DME chung

=>ΔMDE đồng dạng với ΔMBD

=>MD/MB=ME/MD

=>MD^2=MB*ME

a: Xet (O) có

ΔAHB nội tiếp

AB là đường kính

Do đo: ΔAHB vuông tại H

=>AH vuông góc với BC

AB^2=BC*BH

b: ΔOAD cân tại O

mà OC là đường cao

nên OC là phân giác của góc AOD

Xét ΔOAC và ΔODC có

OA=OD

góc AOC=góc DOC

OC chung

Do đó: ΔOAC=ΔODC

=>góc ODC=90 độ

=>CD là tiếp tuyến của (O)

a: Xét (O) có 

AT là tiếp tuyến

AT' là tiếp tuyến

Do đó: AT=AT'

hay A nằm trên đường trung trực của TT'(1)

Ta có: OT=OT'

nên O nằm trên đường trung trực của TT'(2)

Từ (1) và (2) suy ra AO là đường trung trực của TT'

Xét ΔOTA vuông tại T có TI là đường cao

nên \(AT^2=AI\cdot AO\)

b: Xét ΔAIJ vuông tại I và ΔAHO vuông tại H có 

\(\widehat{HAO}\) chung

Do đó: ΔAIJ\(\sim\)ΔAHO

5 tháng 1 2022

b vẽ hình ra dc k