Tìm số tự nhiên n lớn nhất có ba chữ số sao cho n^2-n chia hết cho 5.
ai giải nhanh tui tik cho đồng thời kb
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2-n=n(n-1) chia hết cho 5=>n hoặc n-1 chia hết cho 5
vì n lớn nhất có 3 chữ số =>n=995 hoặc n=996
vậy n=996
Ta có:
n2 - n chia hết cho 5
=> n(n - 1) chia hết cho 5
=> n hoặc n - 1 chia hết cho 5
+ n chia hết cho 5, n lớn nhất có 2 chữ số => n = 95 (1)
+ n - 1 chia hết cho 5, n lớn nhất có 2 chữ số => n - 1 = 95 => n = 96 (2)
Lại có n lớn nhất có 2 chữ số (3)
(1), (2), (3) => n = 96
Bài 1:
Giải:
Số tự nhiên có hai chữ số có dạng: \(\overline{ab}\)
Khi viết số đó sau số 2003 ta được số: \(\overline{2003ab}\)
Theo bài ta có: \(\overline{2003ab}\) ⋮ 37
200300 + \(\overline{ab}\) ⋮ 37
200281 + 19 + \(\overline{ab}\) ⋮ 37
19 + \(\overline{ab}\) ⋮ 37
19 + \(\overline{ab}\) \(\in\) B(37) = {0; 37; 74; 111; 148;...;}
\(\overline{ab}\) \(\in\) {-19; 18; 55; 92; 129;...;}
Vậy \(\overline{ab}\) \(\in\) {18; 55; 92}
Ta có
\(n^2-n=n\left(n-1\right)\)
Để \(n\left(n-1\right)\)chia hết cho 5 thì
n phải chia hết cho 5 hoặc n-1 phải chia hết cho 5
Mà n nhỏ nhất có ba chữ số mà n>n-1 nữa
nên n=100
Hết
n=996
Tui nhanh nhì tui
N= ............