K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2016

\(S=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(S=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\)

\(S=1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}>3\)

29 tháng 9 2018

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{2}{x^2-1}-\frac{x}{x-1}+\frac{1}{x+1}\right)\) Đkxđ : x khác 1 ; x khác -1 

\(A=\frac{\left(x+1\right)^2-\left(x-1\right)^2}{x^2-1}:\frac{2-x\left(x+1\right)+x-1}{x^2-1}\)

\(A=\frac{x^2+2x+1-x^2+2x-1}{x^2-1}.\frac{x^2-1}{2-x^2-1+x-1}\)

\(A=\frac{4x}{-x^2+x}=\frac{4x}{x\left(1-x\right)}\)

\(A=\frac{4}{1-x}\)

9 tháng 8 2017

1) x(x-2) + 3(x+5) + 4x -15 =0

=> x\(^2\) - 2x + 3x + 15 + 4x - 15 = 0

=> ( x\(^2\) -2x + 3x + 4x ) + 15 - 15 = 0

=> x \(^2\) -2x+3x+4x = 0

=> x(x-2+3+4)=0

\(\Rightarrow\orbr{\begin{cases}x=0\\x-2+3+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}}\)

2) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}=2017\)

\(\Rightarrow2017\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=2017.2017\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=2017^2\)

\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}=2017^2\)

\(\Rightarrow\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+c}+\frac{c}{a+b}\right)=2017^2\)

\(\Rightarrow\left(1+\frac{c}{a+b}\right)+\left(1+\frac{a}{b+c}\right)+\left(1+\frac{c}{a+b}\right)=2017^2\)

\(\Rightarrow3+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2-3\)

9 tháng 8 2017

xin lỗi mik xin đc sửa lại 3 dòng cuối vì mik ghi nhầm :

\(\Rightarrow\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+c}+\frac{b}{a+c}\right)=2017^2\)

\(\Rightarrow\left(1+\frac{c}{a+b}\right)+\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{a+c}\right)=2017^2\)

\(\Rightarrow3+\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=2017^2\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2-3\)

22 tháng 9 2017

a)  ta có \(S=a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

 Áp dụng bất đẳng thức cô si ta có \(a+\frac{1}{4a}\ge2\sqrt{\frac{a.1}{4a}}=2.\frac{1}{2}=1\)

tương tự ta có \(b+\frac{1}{4b}\ge1;c+\frac{1}{4c}\ge1\)

=> \(a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}\ge3\)

mặt khác Áp dụng bất đẳng thức svác sơ ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\frac{3}{2}}=6\) (vì a+b+c<=3/2)

cộng từng vế ta có \(S\ge9\)

dấu = xảy ra <=> a=b=c=1/2

câu 2 tương tự

22 tháng 9 2017

chết quên khi mà cậu dùng svác sơ xong thì cậu phải nhân thêm 3/4 nữa rồi mới cộng vào để tính Smin

18 tháng 9 2018

1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi x=y=1

Máy mình bị lỗi nên ko nhìn được các bài tiếp theo

Chúc bạn học tốt :)

18 tháng 9 2018

Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2    

Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0

16 tháng 7 2016

2) Ta có :  \(\left|x-1\right|+\left|1-x\right|=2\) (1)

Xét 3 trường hợp : 

1. Với \(x>1\) , phương trình (1) trở thành : \(x-1+x-1=2\Leftrightarrow2x=4\Leftrightarrow x=2\) (thoả mãn)

2. Với \(x< 1\), phương trình (1) trở thành : \(1-x+1-x=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(thoả mãn)

3. Với x = 1 , phương trình vô nghiệm.

Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)

16 tháng 7 2016

1) Cách 1:

Ta có ; \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Mặt khác theo bất đẳng thức Cauchy :\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) ;\(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Rightarrow A\ge1+2+2+2=9\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{a}{c}=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow a=b=c\)

Vậy Min A = 9 <=> a = b = c

Cách 2 : Sử dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)

26 tháng 6 2017

Câu 1:

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak;y=bk;z=ck\)

Ta có: \(\frac{bz-cy}{a}=\frac{bck-bck}{a}=0\) (1)

\(\frac{cx-az}{b}=\frac{ack-ack}{b}=0\) (2)
\(\frac{ay-bx}{c}=\frac{abk-abk}{c}=0\) (3)

Từ (1),(2),(3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

Câu 2:

Theo đề bài ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\), thêm 1 vào mỗi phân số ta được:

\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)

\(\Rightarrow\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

\(\Rightarrow\left(a+b+c\right)\cdot\frac{1}{b+c}=\left(a+b+c\right)\cdot\frac{1}{a+c}=\left(a+b+c\right)\cdot\frac{1}{a+b}\)

Vì a,b,c khác nhau và khác 0 nên đẳng thức xảy ra chỉ khi a + b + c = 0 => \(\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)

Thay vào P ta được:

\(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

Vậy P = -3

Câu 3:

Theo đề bài ta có \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\), bớt 1 ở mỗi phân số ta được:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

- Nếu a + b + c + d \(\ne\) 0 => a = b = c = d lúc đó M = 1 + 1 + 1 + 1 = 4

- Nếu a + b + c + d = 0 => a + b = -(c + d)

                                        b + c = -(d + a)

                                        c + d = -(a + b)

                                        d + a = -(b + c)

Lúc đó M = (-1) + (-1) + (-1) + (-1) = -4