K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2022

Áp dụng BĐT Cô si cho 2 số dương, ta có:

\(\left[\left(x+y\right)+\dfrac{1}{x+y}\right]\ge2\sqrt{\left(x+y\right).\dfrac{1}{x+y}}=2\)

Dấu "=" \(\Leftrightarrow x+y=\dfrac{1}{x+y}\)

             \(\Leftrightarrow\left(x+y\right)^2=1\)

19 tháng 2 2022

2

1 tháng 6 2021

\(x+y+2=4xy\Rightarrow x+y+2\le\left(x+y\right)^2\)

\(\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)-2\ge0\)

\(\Leftrightarrow\left(x+y-2\right)\left(x+y+1\right)\ge0\)

\(\Leftrightarrow x+y-2\ge0\) (do x+y+1>0 với mọi x,y>0)

\(\Leftrightarrow x+y\ge2\)

Có \(x+y+\dfrac{1}{x+y}=\left(x+y\right)+\dfrac{4}{x+y}-\dfrac{3}{x+y}\)\(\ge2\sqrt{\left(x+y\right).\dfrac{4}{x+y}}-\dfrac{3}{2}=\dfrac{5}{2}\)

Dấu = xảy ra <=> x=y=1

Vậy GTNN của biểu thức là \(\dfrac{5}{2}\)

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

NV
21 tháng 4 2021

\(y=2+\dfrac{6}{x-3}\)

\(P=3x\left(2+\dfrac{6}{x-3}\right)+2x+2+\dfrac{6}{x-3}\)

\(P=8x+2+\dfrac{18x}{x-3}+\dfrac{6}{x-3}=8x+20+\dfrac{60}{x-3}\)

\(P=8\left(x-3\right)+\dfrac{60}{x-3}+44\ge2\sqrt{\dfrac{480\left(x-3\right)}{x-3}}+44=44+8\sqrt{30}\)

\(P_{min}=44+8\sqrt{30}\) khi \(8\left(x-3\right)=\dfrac{60}{x-3}\Leftrightarrow x=\dfrac{6+\sqrt{30}}{2}\)

22 tháng 4 2021

Dạ, em cảm ơn thầy ạ

4 tháng 8 2021

còn cách làm khác không ạ?

 

31 tháng 5 2021

Áp dụng bđt : \(\dfrac{1}{a}\)\(\dfrac{1}{b}\) ≥ \(\dfrac{4}{a+b}\)(dấu "=" xảy ra ⇔ a=b)

⇒ P= \(\dfrac{1}{x+1}\)\(\dfrac{1}{y+2}\) ≥ \(\dfrac{4}{x+1+y+2}\) = \(\dfrac{4}{3+3}\) = \(\dfrac{2}{3}\)

Vậy Pmin=\(\dfrac{3}{2}\) ; dấu '=" xảy ra ⇔ \(\left\{{}\begin{matrix}x+1=y+2\\x+y=3\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

 

 

31 tháng 5 2021

Không thỏa mãn điểm rơi kìa bạn

NV
10 tháng 1 2021

\(P+3=x+\left(y^2+1\right)+\left(z^3+1+1\right)\ge x+2y+3z\)

\(\Rightarrow P\ge x+2y+3z-3\)

\(6=\dfrac{1}{x}+\dfrac{4}{2y}+\dfrac{9}{3z}\ge\dfrac{\left(1+2+3\right)^2}{x+2y+3z}\)

\(\Rightarrow x+2y+3z\ge6\Rightarrow P\ge3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

7 tháng 12 2017

Ta có: P = \(P=\left(1+\frac{1}{x}\right)\left(1-\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\) (HĐT số 3)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{-x.-y}{xy}\)

= (1 + 1/x)(1 + 1/y) 
= 1 + 1/(xy) + (1/x + 1/y) = 1 + 1/(xy) + (x + y)/xy 
= 1 + 1/(xy) + 1/(xy) = 1 + 2/(xy) 
Áp dụng bđt: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
 \(\Rightarrow P\ge\frac{1+2}{\frac{1}{4}}=9\) 
Vậy PMin = 9 xảy ra \(\Leftrightarrow x=y=\) \(\frac{1}{2}\)