tính S=1/10+1/15+1/21+1/28+.....+1/120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{105}+\frac{1}{120}\)
\(M=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{210}+\frac{2}{240}\)
\(M=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+...+\frac{2}{14.15}+\frac{2}{15.16}\)
\(M=\frac{2}{4}-\frac{2}{5}+\frac{2}{5}-\frac{2}{6}+\frac{2}{6}-\frac{2}{7}+\frac{2}{7}-\frac{2}{8}+...+\frac{2}{15}-\frac{2}{16}\)
\(M=\frac{2}{4}-\frac{2}{16}=\frac{3}{8}\)
Vì \(\frac{3}{9}< \frac{3}{8}< \frac{4}{8}\)nên \(\frac{1}{3}< M< \frac{1}{2}\)
Vậy \(\frac{1}{3}< M< \frac{1}{2}\)
P/S : Đừng nói như lần trước nhé!
\(S = \frac{1}{3} +\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28} \)
\(S=\frac{1}{3}+\frac{1}{3}.\frac{1}{2}+\frac{1}{5}.\frac{1}{2}+\frac{1}{5}.\frac{1}{3}+\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{1}{4} \)
\(S=\frac{1}{3}(1+\frac{1}{2})+\frac{1}{5}(\frac{1}{2}+\frac{1}{3})+\frac{1}{7}(\frac{1}{3}+\frac{1}{4})\)
\(S=\frac{1}{3}.\frac{3}{2}+\frac{1}{5}.\frac{5}{6}+\frac{1}{7}.\frac{7}{12}\)
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}\)
\(S=\frac{6}{12}+\frac{2}{12}+\frac{1}{12}\)
\(S=\frac{9}{12}\)
\(S=\frac{3}{4}\)
\(M=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{105}+\dfrac{1}{120}\)
\(M=2.\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)
\(M=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{15.16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(M=2.\dfrac{3}{16}\)
\(M=\dfrac{3}{8}\)
Vậy \(\dfrac{1}{3}< M< \dfrac{1}{2}\)
A=\(2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+......+\frac{1}{240}\right)\)
A=\(2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{15.16}\right)\)
A=\(2.\left(\frac{1}{4.}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+.......+\frac{1}{15}-\frac{1}{16}\right)\)
A=\(2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
A=\(2.\left(\frac{4}{16}-\frac{1}{16}\right)\)
\(A=2.\frac{3}{16}\)
\(A=\frac{3}{8}\)
\(Vay\) \(A=\frac{3}{8}\)
\(S=\frac{2}{20}+\frac{2}{30}+...+\frac{2}{240}\)
\(=2\left(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(=2\times\frac{3}{16}\)
\(=\frac{3}{8}\)