Cho Δ ABC, trên cạnh AB lấy điểm M sao cho MB = 2MA. Từ M kẻ Mi, MK lần lượt song song với BC và AC ( I ∈ AC, K ∈ BC )
a) Chứng minh : ΔAMI ᔕ ΔABC
b) Chứng minh: ΔAMI ᔕ ΔMBK
c) Tính tỉ số chu vi của ΔAMI và ΔMBK
Chú thích : Kí hiệu ᔕ là đồng dạng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMI và ΔCMB có
MA=MC
góc AMI=góc CMB
MI=MB
Do đó: ΔAMI=ΔCMB
b: Xét tứ giác ABCI có
M là trung điểm chung của AC và BI
nên ABCI là hình bình hành
Suy ra: AI//BC và AI=BC
Xét tứ giác AKBC có
N là trung điểm chung của AB và KC
nên AKBC là hình bình hành
Suy ra: AK//BC và AK=BC
c: Ta có: AK//BC
AI//BC
Do đó: K,A,I thẳng hàng
mà AK=AI
nên A là trung điểm của KI
:V chụp xong không gửi được cái phần kia nên mình chép ra vậy hình bạn tự vẽ nhé v
a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Xét tam giác ABC có MN//BC (gt)
\(\Rightarrow\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)( hệ quả của định lý Ta-let)
\(\Rightarrow\frac{3}{4}=\frac{AN}{8}=\frac{MN}{10}\)
\(\Rightarrow\hept{\begin{cases}AN=6\left(cm\right)\\MN=7,5\left(cm\right)\end{cases}}\)
b)Vì MI//AC (gt)
\(\Rightarrow MI//AK\left(K\in AB\right)\)
Vì IK//AB(gt)
\(\Rightarrow IK//AM\left(M\in AB\right)\)
Ta có: \(\hept{\begin{cases}MI//AK\left(cmt\right)\\IK//AM\left(cmt\right)\end{cases}\Rightarrow MI=AK}\)( tc cặp đoạn chắn)
Ta có: AM+MB=AB
\(\Rightarrow MB=1,5\left(cm\right)\)
Xét tam giác ABC có MI//AB(gt)
Cho biểu thức B=\(\frac{2x+1}{x^2-1}\); A= \(\frac{3x+1}{x^2-1}\)--\(\frac{x}{x-1}\)+\(\frac{x-1}{x+1}\) (x khác +,- 1; x khác \(\frac{-1}{2}\))
a) Tính giá trị của B biết x=-2
b) Rút gọn A
c) Cho P=A:B Tìm x biết P=3
Cho biểu thức A=\(\left(\frac{2x-3}{x^2-9}-\frac{2}{x+3}\right):\frac{x}{x+3}\)(x khác +,- 3)
a) Rút gọn A
b) TÍnh giá trị của A khi x=\(-\frac{1}{2}\)
c) Tìm các giá trị nguyên của x để A nhận giá trị nguyên
Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.
a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)
Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)
b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K
Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:
\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)
Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)
\(\Rightarrow AK\perp BI\)tại H
a) Xét ΔAMI và ΔABC có
\(\widehat{AMI}=\widehat{ABC}\)(hai góc đồng vị, MI//BC)
\(\widehat{MAI}\) chung
Do đó: ΔAMI\(\sim\)ΔABC(g-g)
b) Xét ΔMBK và ΔABC có
\(\widehat{BMK}=\widehat{BAC}\)(hai góc so le trong, MK//AC)
\(\widehat{MBK}\) chung
Do đó: ΔMBK\(\sim\)ΔABC(g-g)
mà ΔAMI\(\sim\)ΔABC(cmt)
nên ΔAMI\(\sim\)ΔMBK(đpcm)
giúp em luôn phần c) được không ạ