Cho tam giác ABC cân tại A . Kẻ BD và Ce lần lượt vuông góc với AB và AC . BD và CE giao nhau tại H . CMR
a. Tam giác ABD = ACE
b. Tam giác AED cân
c. AH là trung trực củ ED
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét 2 tam giác vuông ABD và ACE có:
AB=AC(gt)
\(\widehat{A}\)chung
=> tam giác ABD=tam giác ACE(CH-GN)
b)vì tam giác ABD=tam giác ACE(câu a) => AD=AE
=> tam giác AED cân tại A
c) ta thấy H là trực tâm của tam giác cân ABC
=> \(\widehat{BAH}\)=\(\widehat{CAH}\)
gọi O là giao điểm của AH và ED
xét tam giác AOE và tam giác AOD có:
AE=AD(tam giác AED cân)
\(\widehat{EAO}\)=\(\widehat{DAO}\)(cmt)
AO chung
=> tam giác AOE=tam giác AOD(c.g.c)
=> OE=OD=> O là trung điểm của ED(1)
\(\widehat{AOE=\widehat{AOD}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOE=\widehat{AOD}}\)=90 độ => AO\(\perp\)ED(2)
từ (1) và (2) => AH là trung trực của ED
a) Xét tam giác ABD và tg ACE có:
D^ = E^ = 90độ (gt)
A là góc chung
AB = AC ( do tam giác ABC cân tại A)
=> tam giác ABD = tam giác ACE (ch-gn)
b) Vì AD = AE ( tg ABD = tg ACE)
=> tg AED cân tại A.
c) Vì AD = AE (cmt)
=> A thuộc đường trung trực của ED.
Xét tg AEH và tg ADH có:
E^ = D^ = 90độ (gt)
AD = AE (cmt)
AH cạnh huyền chung.
=> tg AEH = tg ADH (ch-cgv)
=> HE = HD.
=> H thuộc đường trung trực của ED.
=> AH là đường trung trực của ED.
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
b) Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBEC=ΔCDB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{BCE}=\widehat{DBC}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
\(\Leftrightarrow IB=IC\)(hai cạnh bên)
Xét ΔBAI và ΔCAI có
BA=CA(ΔABC cân tại A)
AI chung
IB=IC(cmt)
Do đó: ΔBAI=ΔCAI(c-c-c)
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)
c) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: IB=IC(cmt)
nên I nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy AI là đường trung trực của BC(đpcm)
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔBAC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(Cạnh huyền-góc nhọn)
A) XÉT ΔABD VUÔNG TẠI D, ΔACE VUÔNG TẠI E
CÓ; AB=AC (ΔABC CÂN TẠI A)
\(\widehat{BAC}\) : GÓC CHUNG
⇒ΔABD= ΔACE (C.HUYỀN-G.NHỌN)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: ΔABD=ΔACE
=>góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
tu ve hinh :
AH cat BC tai O
xet tamgiac HAB va tamgiac HAC co :
BH = CH do tamgiac HBC can tai H (gt)
BA = CA do tamgiac ABD = tamgiac ACE (gt)
AH chung
nen tamgiac HAB = tamgiac HAC (c - c - c)
=> goc BAH = goc CAH (dn) (1)
goc DAB = goc EAC (dd) (2)
goc DAB + goc DAH = goc BAH (3)
goc CAE + goc EAH = goc EAC (4)
(1)(2)(3)(4) => goc DAH = goc HAE (5)
xet tamgiac DHA va tamgiac EHA co : goc HDA = goc HEA do CD | BH va BE | CH (gt) (6)
AH chung (7)
(5)(6)(7) => tamgiac DHA = tamgiac EHA (ch - gn)
=> goc OHB = goc OHC (dn) (8)
tamgiac HBC can tai H => BH = HC va goc HBO = goc HCO (9)
(8)(9) => tamgiac HBO = tamgiac HCO (g - c - g)
=> goc HOB = goc HOC (dn) va OB = OC (dn)
goc HOB + goc HOC = 180 do (kb)
=> HOC = 90 do => AH | BC (dn)
=> AH la trung truc cua BC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc A chung
=>ΔADB=ΔAEC
=>góc ABD=góc ACE
b: góc HBC+góc ABD=góc ABC
góc HCB+góc ACE=góc ACB
mà góc ABD=góc ACE; góc ABC=góc ACB
nên góc HBC=góc HCB
=>ΔBHC cân tại H
=>HB=HC>HD
Bài 1:
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
b: ta có: ΔABD=ΔACE
nên AD=AE
hay ΔADE cân tại A
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
AE=AD
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
mà AE=AD
nên AH là đường trung trực của ED